A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0

Autores
Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multi objective evolutionary approach based on decomposition for efficiently addressing the multi objective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Materia
INDUSTRY 4.0
FLOW SHOP
MISSING OPERATION
EVOLUTIONARY ALGORITHMS
MULTI OBJECTIVE OPTIMIZATION
MAKESPAN
TOTAL TARDINESS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/196443

id CONICETDig_d51e9a8c47b3c4662d01bf813f3f4074
oai_identifier_str oai:ri.conicet.gov.ar:11336/196443
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0Rossit, Diego GabrielNesmachnow, SergioRossit, Daniel AlejandroINDUSTRY 4.0FLOW SHOPMISSING OPERATIONEVOLUTIONARY ALGORITHMSMULTI OBJECTIVE OPTIMIZATIONMAKESPANTOTAL TARDINESShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multi objective evolutionary approach based on decomposition for efficiently addressing the multi objective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Nesmachnow, Sergio. Universidad de la República; UruguayFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaRam Arti Publishers2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196443Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro; A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0; Ram Arti Publishers; International Journal of Mathematical, Engineering and Management Sciences; 7; 4; 8-2022; 433-4542455-7749CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.33889/IJMEMS.2022.7.4.029info:eu-repo/semantics/altIdentifier/url/https://www.ijmems.in/article_detail.php?vid=7&issue_id=33&article_id=439info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:39Zoai:ri.conicet.gov.ar:11336/196443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:39.519CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
title A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
spellingShingle A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
Rossit, Diego Gabriel
INDUSTRY 4.0
FLOW SHOP
MISSING OPERATION
EVOLUTIONARY ALGORITHMS
MULTI OBJECTIVE OPTIMIZATION
MAKESPAN
TOTAL TARDINESS
title_short A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
title_full A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
title_fullStr A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
title_full_unstemmed A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
title_sort A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0
dc.creator.none.fl_str_mv Rossit, Diego Gabriel
Nesmachnow, Sergio
Rossit, Daniel Alejandro
author Rossit, Diego Gabriel
author_facet Rossit, Diego Gabriel
Nesmachnow, Sergio
Rossit, Daniel Alejandro
author_role author
author2 Nesmachnow, Sergio
Rossit, Daniel Alejandro
author2_role author
author
dc.subject.none.fl_str_mv INDUSTRY 4.0
FLOW SHOP
MISSING OPERATION
EVOLUTIONARY ALGORITHMS
MULTI OBJECTIVE OPTIMIZATION
MAKESPAN
TOTAL TARDINESS
topic INDUSTRY 4.0
FLOW SHOP
MISSING OPERATION
EVOLUTIONARY ALGORITHMS
MULTI OBJECTIVE OPTIMIZATION
MAKESPAN
TOTAL TARDINESS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multi objective evolutionary approach based on decomposition for efficiently addressing the multi objective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
description Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multi objective evolutionary approach based on decomposition for efficiently addressing the multi objective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/196443
Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro; A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0; Ram Arti Publishers; International Journal of Mathematical, Engineering and Management Sciences; 7; 4; 8-2022; 433-454
2455-7749
CONICET Digital
CONICET
url http://hdl.handle.net/11336/196443
identifier_str_mv Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro; A Multi Objective Evolutionary Algorithm based on Decomposition for a Flow Shop Scheduling Problem in the Context of Industry 4.0; Ram Arti Publishers; International Journal of Mathematical, Engineering and Management Sciences; 7; 4; 8-2022; 433-454
2455-7749
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.33889/IJMEMS.2022.7.4.029
info:eu-repo/semantics/altIdentifier/url/https://www.ijmems.in/article_detail.php?vid=7&issue_id=33&article_id=439
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Ram Arti Publishers
publisher.none.fl_str_mv Ram Arti Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613373618028544
score 13.070432