A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0
- Autores
- Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multiobjective evolutionary approach based on decomposition for efficiently addressing the multiobjective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina - Materia
-
INDUSTRY 4.0
FLOW SHOP
MISSING OPERATION
TOTAL TARDINESS
MAKESPAN
EVOLUTIONARY ALGORITHMS
MULTIOBJECTIVE OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/196113
Ver los metadatos del registro completo
id |
CONICETDig_907049dc6b7087161147d8339acda777 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/196113 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0Rossit, Diego GabrielNesmachnow, SergioRossit, Daniel AlejandroINDUSTRY 4.0FLOW SHOPMISSING OPERATIONTOTAL TARDINESSMAKESPANEVOLUTIONARY ALGORITHMSMULTIOBJECTIVE OPTIMIZATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multiobjective evolutionary approach based on decomposition for efficiently addressing the multiobjective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics.Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Nesmachnow, Sergio. Universidad de la República; UruguayFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaRam Arti Publishers2022-06-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196113Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro; A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0; Ram Arti Publishers; International Journal of Mathematical, Engineering and Management Sciences; 7; 4; 16-6-2022; 433-4542455-7749CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ijmems.in/article_detail.php?vid=7&issue_id=33&article_id=439info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.33889/IJMEMS.2022.7.4.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:19Zoai:ri.conicet.gov.ar:11336/196113instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:19.958CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 |
title |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 |
spellingShingle |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 Rossit, Diego Gabriel INDUSTRY 4.0 FLOW SHOP MISSING OPERATION TOTAL TARDINESS MAKESPAN EVOLUTIONARY ALGORITHMS MULTIOBJECTIVE OPTIMIZATION |
title_short |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 |
title_full |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 |
title_fullStr |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 |
title_full_unstemmed |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 |
title_sort |
A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0 |
dc.creator.none.fl_str_mv |
Rossit, Diego Gabriel Nesmachnow, Sergio Rossit, Daniel Alejandro |
author |
Rossit, Diego Gabriel |
author_facet |
Rossit, Diego Gabriel Nesmachnow, Sergio Rossit, Daniel Alejandro |
author_role |
author |
author2 |
Nesmachnow, Sergio Rossit, Daniel Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INDUSTRY 4.0 FLOW SHOP MISSING OPERATION TOTAL TARDINESS MAKESPAN EVOLUTIONARY ALGORITHMS MULTIOBJECTIVE OPTIMIZATION |
topic |
INDUSTRY 4.0 FLOW SHOP MISSING OPERATION TOTAL TARDINESS MAKESPAN EVOLUTIONARY ALGORITHMS MULTIOBJECTIVE OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multiobjective evolutionary approach based on decomposition for efficiently addressing the multiobjective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics. Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina |
description |
Under the novel paradigm of Industry 4.0, missing operations have arisen as a result of the increasingly customization of the industrial products in which customers have an extended control over the characteristics of the final products. As a result, this has completely modified the scheduling and planning management of jobs in modern factories. As a contribution in this area, this article presents a multiobjective evolutionary approach based on decomposition for efficiently addressing the multiobjective flow shop problem with missing operations, a relevant problem in modern industry. Tests performed over a representative set of instances show the competitiveness of the proposed approach when compared with other baseline metaheuristics. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/196113 Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro; A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0; Ram Arti Publishers; International Journal of Mathematical, Engineering and Management Sciences; 7; 4; 16-6-2022; 433-454 2455-7749 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/196113 |
identifier_str_mv |
Rossit, Diego Gabriel; Nesmachnow, Sergio; Rossit, Daniel Alejandro; A Multiobjective Evolutionary Algorithm based on Decomposition for a flow shop scheduling problem in the context of Industry 4.0; Ram Arti Publishers; International Journal of Mathematical, Engineering and Management Sciences; 7; 4; 16-6-2022; 433-454 2455-7749 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ijmems.in/article_detail.php?vid=7&issue_id=33&article_id=439 info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.33889/IJMEMS.2022.7.4.029 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Ram Arti Publishers |
publisher.none.fl_str_mv |
Ram Arti Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269750945644544 |
score |
13.13397 |