Operation Skipping Flow Shop Scheduling and Industry 4.0
- Autores
- Rossit, Daniel Alejandro; Toncovich, Adrián Andrés; Rossit, Diego Gabriel; Nesmachnow, Sergio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Industry 4.0 is a modern approach where the connectivity between different stages of the production process and the consumers is enhanced. In this paper a relevant problem for both Industry 4.0 and flow shop literature is addressed: an operation skipping flow shop scheduling problem. A solution method to optimize total tardiness, which is novel to the related literature, is presented. The solution approach consists of two stages. In the first stage, a genetic algorithm is applied to obtain an efficient solution in a permutation fashion. In the second stage, the solution obtained in the previous stage is improved with a simulated annealing algorithm considering a non-permutation strategy. Results show that NPFS solutions outperform PFS solutions for this problem. Furthermore, if the percentage of skipping operations increases the impact of the NPFS approach increases too.
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay
International Conference of Production Research-Americas (ICPR-Americas)
Bahía Blanca
Argentina
Universidad Nacional del Sur - Materia
-
INDUSTRY 4.0
NON-PERMUTATION FLOW SHOP
SKIPPING OPERATIONS
CYBER-PHYSICAL SYSTEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/147139
Ver los metadatos del registro completo
id |
CONICETDig_d4783af251736d58fc09c120b00d8b3a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/147139 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Operation Skipping Flow Shop Scheduling and Industry 4.0Rossit, Daniel AlejandroToncovich, Adrián AndrésRossit, Diego GabrielNesmachnow, SergioINDUSTRY 4.0NON-PERMUTATION FLOW SHOPSKIPPING OPERATIONSCYBER-PHYSICAL SYSTEMhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Industry 4.0 is a modern approach where the connectivity between different stages of the production process and the consumers is enhanced. In this paper a relevant problem for both Industry 4.0 and flow shop literature is addressed: an operation skipping flow shop scheduling problem. A solution method to optimize total tardiness, which is novel to the related literature, is presented. The solution approach consists of two stages. In the first stage, a genetic algorithm is applied to obtain an efficient solution in a permutation fashion. In the second stage, the solution obtained in the previous stage is improved with a simulated annealing algorithm considering a non-permutation strategy. Results show that NPFS solutions outperform PFS solutions for this problem. Furthermore, if the percentage of skipping operations increases the impact of the NPFS approach increases too.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Nesmachnow, Sergio. Universidad de la República; UruguayInternational Conference of Production Research-Americas (ICPR-Americas)Bahía BlancaArgentinaUniversidad Nacional del SurUniversidad Nacional del Sur2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147139Operation Skipping Flow Shop Scheduling and Industry 4.0; International Conference of Production Research-Americas (ICPR-Americas); Bahía Blanca; Argentina; 2020; 1212-12212619-1865CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.matematica.uns.edu.ar/ipcra/pdf/icpr_americas_2020_proceedings.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:50Zoai:ri.conicet.gov.ar:11336/147139instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:51.088CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Operation Skipping Flow Shop Scheduling and Industry 4.0 |
title |
Operation Skipping Flow Shop Scheduling and Industry 4.0 |
spellingShingle |
Operation Skipping Flow Shop Scheduling and Industry 4.0 Rossit, Daniel Alejandro INDUSTRY 4.0 NON-PERMUTATION FLOW SHOP SKIPPING OPERATIONS CYBER-PHYSICAL SYSTEM |
title_short |
Operation Skipping Flow Shop Scheduling and Industry 4.0 |
title_full |
Operation Skipping Flow Shop Scheduling and Industry 4.0 |
title_fullStr |
Operation Skipping Flow Shop Scheduling and Industry 4.0 |
title_full_unstemmed |
Operation Skipping Flow Shop Scheduling and Industry 4.0 |
title_sort |
Operation Skipping Flow Shop Scheduling and Industry 4.0 |
dc.creator.none.fl_str_mv |
Rossit, Daniel Alejandro Toncovich, Adrián Andrés Rossit, Diego Gabriel Nesmachnow, Sergio |
author |
Rossit, Daniel Alejandro |
author_facet |
Rossit, Daniel Alejandro Toncovich, Adrián Andrés Rossit, Diego Gabriel Nesmachnow, Sergio |
author_role |
author |
author2 |
Toncovich, Adrián Andrés Rossit, Diego Gabriel Nesmachnow, Sergio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INDUSTRY 4.0 NON-PERMUTATION FLOW SHOP SKIPPING OPERATIONS CYBER-PHYSICAL SYSTEM |
topic |
INDUSTRY 4.0 NON-PERMUTATION FLOW SHOP SKIPPING OPERATIONS CYBER-PHYSICAL SYSTEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Industry 4.0 is a modern approach where the connectivity between different stages of the production process and the consumers is enhanced. In this paper a relevant problem for both Industry 4.0 and flow shop literature is addressed: an operation skipping flow shop scheduling problem. A solution method to optimize total tardiness, which is novel to the related literature, is presented. The solution approach consists of two stages. In the first stage, a genetic algorithm is applied to obtain an efficient solution in a permutation fashion. In the second stage, the solution obtained in the previous stage is improved with a simulated annealing algorithm considering a non-permutation strategy. Results show that NPFS solutions outperform PFS solutions for this problem. Furthermore, if the percentage of skipping operations increases the impact of the NPFS approach increases too. Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay International Conference of Production Research-Americas (ICPR-Americas) Bahía Blanca Argentina Universidad Nacional del Sur |
description |
Industry 4.0 is a modern approach where the connectivity between different stages of the production process and the consumers is enhanced. In this paper a relevant problem for both Industry 4.0 and flow shop literature is addressed: an operation skipping flow shop scheduling problem. A solution method to optimize total tardiness, which is novel to the related literature, is presented. The solution approach consists of two stages. In the first stage, a genetic algorithm is applied to obtain an efficient solution in a permutation fashion. In the second stage, the solution obtained in the previous stage is improved with a simulated annealing algorithm considering a non-permutation strategy. Results show that NPFS solutions outperform PFS solutions for this problem. Furthermore, if the percentage of skipping operations increases the impact of the NPFS approach increases too. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/147139 Operation Skipping Flow Shop Scheduling and Industry 4.0; International Conference of Production Research-Americas (ICPR-Americas); Bahía Blanca; Argentina; 2020; 1212-1221 2619-1865 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/147139 |
identifier_str_mv |
Operation Skipping Flow Shop Scheduling and Industry 4.0; International Conference of Production Research-Americas (ICPR-Americas); Bahía Blanca; Argentina; 2020; 1212-1221 2619-1865 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.matematica.uns.edu.ar/ipcra/pdf/icpr_americas_2020_proceedings.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional del Sur |
publisher.none.fl_str_mv |
Universidad Nacional del Sur |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270172899966976 |
score |
13.13397 |