Geometry of unitaries in a finite algebra: variation formulas and convexity
- Autores
- Andruchow, Esteban; Recht, Lázaro
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a C∗-algebra A with trace τ, we compute the first and second variation formulas for the p-energy functional Fp of the unitary group UA of A, for p = 2n an even integer, namely: Fp(γ) = Z b a τ([ ˙γ∗γ˙ ] n)dt, where γ(t) ∈ UA is a smooth curve for t ∈ [a, b]. As an application of these formulas, we prove that if dp denotes the geodesic distance of the Finsler metric induced by the p-norm xp = τ([x∗x] n)1/p, u0, u1, u2 ∈ UA with ui − uj < 1 2 p2 − √2 and δ(t) is a geodesic of UA joining δ(0) = u0 and δ(1) = u1, then the mapping f(t) = dp(u2, δ(t))p, t ∈ [0, 1] 15 is convex.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Recht, Lázaro. Universidad Simón Bolivar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Unitary Operator
Convexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19467
Ver los metadatos del registro completo
id |
CONICETDig_93be61dbe8dfca7fdfb8d2cdc66914e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19467 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometry of unitaries in a finite algebra: variation formulas and convexityAndruchow, EstebanRecht, LázaroUnitary OperatorConvexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a C∗-algebra A with trace τ, we compute the first and second variation formulas for the p-energy functional Fp of the unitary group UA of A, for p = 2n an even integer, namely: Fp(γ) = Z b a τ([ ˙γ∗γ˙ ] n)dt, where γ(t) ∈ UA is a smooth curve for t ∈ [a, b]. As an application of these formulas, we prove that if dp denotes the geodesic distance of the Finsler metric induced by the p-norm xp = τ([x∗x] n)1/p, u0, u1, u2 ∈ UA with ui − uj < 1 2 p2 − √2 and δ(t) is a geodesic of UA joining δ(0) = u0 and δ(1) = u1, then the mapping f(t) = dp(u2, δ(t))p, t ∈ [0, 1] 15 is convex.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Recht, Lázaro. Universidad Simón Bolivar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaWorld Scientific2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19467Andruchow, Esteban; Recht, Lázaro; Geometry of unitaries in a finite algebra: variation formulas and convexity; World Scientific; International Journal Of Mathematics; 19; 10; 12-2008; 1-24; 12230129-167XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129167X08005102?journalCode=ijminfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X08005102info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:26Zoai:ri.conicet.gov.ar:11336/19467instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:27.176CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometry of unitaries in a finite algebra: variation formulas and convexity |
title |
Geometry of unitaries in a finite algebra: variation formulas and convexity |
spellingShingle |
Geometry of unitaries in a finite algebra: variation formulas and convexity Andruchow, Esteban Unitary Operator Convexity |
title_short |
Geometry of unitaries in a finite algebra: variation formulas and convexity |
title_full |
Geometry of unitaries in a finite algebra: variation formulas and convexity |
title_fullStr |
Geometry of unitaries in a finite algebra: variation formulas and convexity |
title_full_unstemmed |
Geometry of unitaries in a finite algebra: variation formulas and convexity |
title_sort |
Geometry of unitaries in a finite algebra: variation formulas and convexity |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Recht, Lázaro |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Recht, Lázaro |
author_role |
author |
author2 |
Recht, Lázaro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Unitary Operator Convexity |
topic |
Unitary Operator Convexity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a C∗-algebra A with trace τ, we compute the first and second variation formulas for the p-energy functional Fp of the unitary group UA of A, for p = 2n an even integer, namely: Fp(γ) = Z b a τ([ ˙γ∗γ˙ ] n)dt, where γ(t) ∈ UA is a smooth curve for t ∈ [a, b]. As an application of these formulas, we prove that if dp denotes the geodesic distance of the Finsler metric induced by the p-norm xp = τ([x∗x] n)1/p, u0, u1, u2 ∈ UA with ui − uj < 1 2 p2 − √2 and δ(t) is a geodesic of UA joining δ(0) = u0 and δ(1) = u1, then the mapping f(t) = dp(u2, δ(t))p, t ∈ [0, 1] 15 is convex. Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Recht, Lázaro. Universidad Simón Bolivar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
Given a C∗-algebra A with trace τ, we compute the first and second variation formulas for the p-energy functional Fp of the unitary group UA of A, for p = 2n an even integer, namely: Fp(γ) = Z b a τ([ ˙γ∗γ˙ ] n)dt, where γ(t) ∈ UA is a smooth curve for t ∈ [a, b]. As an application of these formulas, we prove that if dp denotes the geodesic distance of the Finsler metric induced by the p-norm xp = τ([x∗x] n)1/p, u0, u1, u2 ∈ UA with ui − uj < 1 2 p2 − √2 and δ(t) is a geodesic of UA joining δ(0) = u0 and δ(1) = u1, then the mapping f(t) = dp(u2, δ(t))p, t ∈ [0, 1] 15 is convex. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19467 Andruchow, Esteban; Recht, Lázaro; Geometry of unitaries in a finite algebra: variation formulas and convexity; World Scientific; International Journal Of Mathematics; 19; 10; 12-2008; 1-24; 1223 0129-167X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19467 |
identifier_str_mv |
Andruchow, Esteban; Recht, Lázaro; Geometry of unitaries in a finite algebra: variation formulas and convexity; World Scientific; International Journal Of Mathematics; 19; 10; 12-2008; 1-24; 1223 0129-167X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129167X08005102?journalCode=ijm info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X08005102 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269225827172352 |
score |
13.13397 |