Convexity properties of the condition number

Autores
Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.
Fil: Beltran, Carlos. Universidad de Cantabria; España
Fil: Dedieu, Jean Pierre. Université Paul Sabatier; Francia
Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. University of Toronto; Canadá
Materia
CONDITION NUMBER
GEODESIC
LINEAR GROUP
LOG-CONVEXITY
RIEMANNIAN GEOMETRY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68499

id CONICETDig_94f4be51edb30ae20f7b5fb60efe83b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/68499
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convexity properties of the condition numberBeltran, CarlosDedieu, Jean PierreMalajovich, GregorioShub, Michael IraCONDITION NUMBERGEODESICLINEAR GROUPLOG-CONVEXITYRIEMANNIAN GEOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.Fil: Beltran, Carlos. Universidad de Cantabria; EspañaFil: Dedieu, Jean Pierre. Université Paul Sabatier; FranciaFil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; BrasilFil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. University of Toronto; CanadáSociety for Industrial and Applied Mathematics2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68499Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-15060895-47981095-7162CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0395info:eu-repo/semantics/altIdentifier/doi/10.1137/080718681info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/abs/10.1137/080718681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:42Zoai:ri.conicet.gov.ar:11336/68499instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:42.651CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convexity properties of the condition number
title Convexity properties of the condition number
spellingShingle Convexity properties of the condition number
Beltran, Carlos
CONDITION NUMBER
GEODESIC
LINEAR GROUP
LOG-CONVEXITY
RIEMANNIAN GEOMETRY
title_short Convexity properties of the condition number
title_full Convexity properties of the condition number
title_fullStr Convexity properties of the condition number
title_full_unstemmed Convexity properties of the condition number
title_sort Convexity properties of the condition number
dc.creator.none.fl_str_mv Beltran, Carlos
Dedieu, Jean Pierre
Malajovich, Gregorio
Shub, Michael Ira
author Beltran, Carlos
author_facet Beltran, Carlos
Dedieu, Jean Pierre
Malajovich, Gregorio
Shub, Michael Ira
author_role author
author2 Dedieu, Jean Pierre
Malajovich, Gregorio
Shub, Michael Ira
author2_role author
author
author
dc.subject.none.fl_str_mv CONDITION NUMBER
GEODESIC
LINEAR GROUP
LOG-CONVEXITY
RIEMANNIAN GEOMETRY
topic CONDITION NUMBER
GEODESIC
LINEAR GROUP
LOG-CONVEXITY
RIEMANNIAN GEOMETRY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.
Fil: Beltran, Carlos. Universidad de Cantabria; España
Fil: Dedieu, Jean Pierre. Université Paul Sabatier; Francia
Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. University of Toronto; Canadá
description We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.
publishDate 2010
dc.date.none.fl_str_mv 2010-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68499
Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-1506
0895-4798
1095-7162
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68499
identifier_str_mv Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-1506
0895-4798
1095-7162
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0395
info:eu-repo/semantics/altIdentifier/doi/10.1137/080718681
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/abs/10.1137/080718681
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269924369629184
score 12.885934