Convexity properties of the condition number
- Autores
- Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.
Fil: Beltran, Carlos. Universidad de Cantabria; España
Fil: Dedieu, Jean Pierre. Université Paul Sabatier; Francia
Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. University of Toronto; Canadá - Materia
-
CONDITION NUMBER
GEODESIC
LINEAR GROUP
LOG-CONVEXITY
RIEMANNIAN GEOMETRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68499
Ver los metadatos del registro completo
id |
CONICETDig_94f4be51edb30ae20f7b5fb60efe83b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68499 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convexity properties of the condition numberBeltran, CarlosDedieu, Jean PierreMalajovich, GregorioShub, Michael IraCONDITION NUMBERGEODESICLINEAR GROUPLOG-CONVEXITYRIEMANNIAN GEOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.Fil: Beltran, Carlos. Universidad de Cantabria; EspañaFil: Dedieu, Jean Pierre. Université Paul Sabatier; FranciaFil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; BrasilFil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. University of Toronto; CanadáSociety for Industrial and Applied Mathematics2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68499Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-15060895-47981095-7162CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0395info:eu-repo/semantics/altIdentifier/doi/10.1137/080718681info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/abs/10.1137/080718681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:42Zoai:ri.conicet.gov.ar:11336/68499instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:42.651CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convexity properties of the condition number |
title |
Convexity properties of the condition number |
spellingShingle |
Convexity properties of the condition number Beltran, Carlos CONDITION NUMBER GEODESIC LINEAR GROUP LOG-CONVEXITY RIEMANNIAN GEOMETRY |
title_short |
Convexity properties of the condition number |
title_full |
Convexity properties of the condition number |
title_fullStr |
Convexity properties of the condition number |
title_full_unstemmed |
Convexity properties of the condition number |
title_sort |
Convexity properties of the condition number |
dc.creator.none.fl_str_mv |
Beltran, Carlos Dedieu, Jean Pierre Malajovich, Gregorio Shub, Michael Ira |
author |
Beltran, Carlos |
author_facet |
Beltran, Carlos Dedieu, Jean Pierre Malajovich, Gregorio Shub, Michael Ira |
author_role |
author |
author2 |
Dedieu, Jean Pierre Malajovich, Gregorio Shub, Michael Ira |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CONDITION NUMBER GEODESIC LINEAR GROUP LOG-CONVEXITY RIEMANNIAN GEOMETRY |
topic |
CONDITION NUMBER GEODESIC LINEAR GROUP LOG-CONVEXITY RIEMANNIAN GEOMETRY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety. Fil: Beltran, Carlos. Universidad de Cantabria; España Fil: Dedieu, Jean Pierre. Université Paul Sabatier; Francia Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil Fil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. University of Toronto; Canadá |
description |
We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68499 Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-1506 0895-4798 1095-7162 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68499 |
identifier_str_mv |
Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-1506 0895-4798 1095-7162 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0395 info:eu-repo/semantics/altIdentifier/doi/10.1137/080718681 info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/abs/10.1137/080718681 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269924369629184 |
score |
12.885934 |