Spaces of nonpositive curvature arising from a finite algebra

Autores
Conde, Cristian Marcelo; Larotonda, Gabriel Andrés
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we introduce a family of examples that can be regarded as spaces of nonpositive curvature, but with the distinct quality that they are not complete as metric spaces. This amounts to the fact that they are modelled on a finite von Neumann algebra, and the metrics introduced arise from the trace of the algebra. In spite of the noncompleteness of these manifolds, their geometry can be studied from the view-point of metric geometry, and several techniques derived from the functional analysis are applied to gain insight on their geodesic structure.
Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Finite Von Neumann Algebra
Nonpositive Curvature
Short Geodesic
Uniform Convexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19427

id CONICETDig_2b40a3845cb1fcef77341ff21336be49
oai_identifier_str oai:ri.conicet.gov.ar:11336/19427
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spaces of nonpositive curvature arising from a finite algebraConde, Cristian MarceloLarotonda, Gabriel AndrésFinite Von Neumann AlgebraNonpositive CurvatureShort GeodesicUniform Convexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we introduce a family of examples that can be regarded as spaces of nonpositive curvature, but with the distinct quality that they are not complete as metric spaces. This amounts to the fact that they are modelled on a finite von Neumann algebra, and the metrics introduced arise from the trace of the algebra. In spite of the noncompleteness of these manifolds, their geometry can be studied from the view-point of metric geometry, and several techniques derived from the functional analysis are applied to gain insight on their geodesic structure.Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19427Conde, Cristian Marcelo; Larotonda, Gabriel Andrés; Spaces of nonpositive curvature arising from a finite algebra; Elsevier; Journal Of Mathematical Analysis And Applications; 368; 2; 3-2010; 636-6490022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10002386info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.03.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:50Zoai:ri.conicet.gov.ar:11336/19427instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:50.466CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spaces of nonpositive curvature arising from a finite algebra
title Spaces of nonpositive curvature arising from a finite algebra
spellingShingle Spaces of nonpositive curvature arising from a finite algebra
Conde, Cristian Marcelo
Finite Von Neumann Algebra
Nonpositive Curvature
Short Geodesic
Uniform Convexity
title_short Spaces of nonpositive curvature arising from a finite algebra
title_full Spaces of nonpositive curvature arising from a finite algebra
title_fullStr Spaces of nonpositive curvature arising from a finite algebra
title_full_unstemmed Spaces of nonpositive curvature arising from a finite algebra
title_sort Spaces of nonpositive curvature arising from a finite algebra
dc.creator.none.fl_str_mv Conde, Cristian Marcelo
Larotonda, Gabriel Andrés
author Conde, Cristian Marcelo
author_facet Conde, Cristian Marcelo
Larotonda, Gabriel Andrés
author_role author
author2 Larotonda, Gabriel Andrés
author2_role author
dc.subject.none.fl_str_mv Finite Von Neumann Algebra
Nonpositive Curvature
Short Geodesic
Uniform Convexity
topic Finite Von Neumann Algebra
Nonpositive Curvature
Short Geodesic
Uniform Convexity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we introduce a family of examples that can be regarded as spaces of nonpositive curvature, but with the distinct quality that they are not complete as metric spaces. This amounts to the fact that they are modelled on a finite von Neumann algebra, and the metrics introduced arise from the trace of the algebra. In spite of the noncompleteness of these manifolds, their geometry can be studied from the view-point of metric geometry, and several techniques derived from the functional analysis are applied to gain insight on their geodesic structure.
Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description In this paper we introduce a family of examples that can be regarded as spaces of nonpositive curvature, but with the distinct quality that they are not complete as metric spaces. This amounts to the fact that they are modelled on a finite von Neumann algebra, and the metrics introduced arise from the trace of the algebra. In spite of the noncompleteness of these manifolds, their geometry can be studied from the view-point of metric geometry, and several techniques derived from the functional analysis are applied to gain insight on their geodesic structure.
publishDate 2010
dc.date.none.fl_str_mv 2010-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19427
Conde, Cristian Marcelo; Larotonda, Gabriel Andrés; Spaces of nonpositive curvature arising from a finite algebra; Elsevier; Journal Of Mathematical Analysis And Applications; 368; 2; 3-2010; 636-649
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19427
identifier_str_mv Conde, Cristian Marcelo; Larotonda, Gabriel Andrés; Spaces of nonpositive curvature arising from a finite algebra; Elsevier; Journal Of Mathematical Analysis And Applications; 368; 2; 3-2010; 636-649
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10002386
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.03.029
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980292978016256
score 12.993085