Knowledge representation in Industry 4.0 Scheduling problems
- Autores
- Rossit, Daniel Alejandro; Tohmé, Fernando Abel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Industry 4.0 raises the need for a closer integration of management systems in manufacturing companies. Such process is driven by Cyber-Physical Systems (CPS) and the Internet of Things (IoT). Starting from the potential of these technologies, a knowledge architecture aimed at addressing scheduling problems is proposed. Scheduling-support systems generally do not solve real-world scheduling problems, being instead only capable of solving simplified versions, producing solutions that human schedulers adapt to real problems. The architecture aims to record and consolidate the empirical knowledge generated by the solutions of actual scheduling problems. In this way, it summarizes the implicit criteria used by human schedulers. The architecture presented here records this knowledge in data structures compatible with the structure of scheduling problems. In further iterations this knowledge crystallizes into a sound and smart structure.
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina - Materia
-
CYBER-PHYSICAL SYSTEMS
INDUSTRY 4.0
SCHEDULING
DECISIONAL DNA
KNOWLEDGE REPRESENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/165422
Ver los metadatos del registro completo
id |
CONICETDig_59f76140778929e8dc29d693d6ed69fe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/165422 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Knowledge representation in Industry 4.0 Scheduling problemsRossit, Daniel AlejandroTohmé, Fernando AbelCYBER-PHYSICAL SYSTEMSINDUSTRY 4.0SCHEDULINGDECISIONAL DNAKNOWLEDGE REPRESENTATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Industry 4.0 raises the need for a closer integration of management systems in manufacturing companies. Such process is driven by Cyber-Physical Systems (CPS) and the Internet of Things (IoT). Starting from the potential of these technologies, a knowledge architecture aimed at addressing scheduling problems is proposed. Scheduling-support systems generally do not solve real-world scheduling problems, being instead only capable of solving simplified versions, producing solutions that human schedulers adapt to real problems. The architecture aims to record and consolidate the empirical knowledge generated by the solutions of actual scheduling problems. In this way, it summarizes the implicit criteria used by human schedulers. The architecture presented here records this knowledge in data structures compatible with the structure of scheduling problems. In further iterations this knowledge crystallizes into a sound and smart structure.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaTaylor & Francis Ltd2022-01-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165422Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Knowledge representation in Industry 4.0 Scheduling problems; Taylor & Francis Ltd; International Journal Of Computer Integrated Manufacturing; 2022; 10-1-2022; 5-250951-192XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/action/journalInformation?journalCode=tcim20info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1080/0951192X.2021.2022760info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:54:12Zoai:ri.conicet.gov.ar:11336/165422instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:54:13.161CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Knowledge representation in Industry 4.0 Scheduling problems |
title |
Knowledge representation in Industry 4.0 Scheduling problems |
spellingShingle |
Knowledge representation in Industry 4.0 Scheduling problems Rossit, Daniel Alejandro CYBER-PHYSICAL SYSTEMS INDUSTRY 4.0 SCHEDULING DECISIONAL DNA KNOWLEDGE REPRESENTATION |
title_short |
Knowledge representation in Industry 4.0 Scheduling problems |
title_full |
Knowledge representation in Industry 4.0 Scheduling problems |
title_fullStr |
Knowledge representation in Industry 4.0 Scheduling problems |
title_full_unstemmed |
Knowledge representation in Industry 4.0 Scheduling problems |
title_sort |
Knowledge representation in Industry 4.0 Scheduling problems |
dc.creator.none.fl_str_mv |
Rossit, Daniel Alejandro Tohmé, Fernando Abel |
author |
Rossit, Daniel Alejandro |
author_facet |
Rossit, Daniel Alejandro Tohmé, Fernando Abel |
author_role |
author |
author2 |
Tohmé, Fernando Abel |
author2_role |
author |
dc.subject.none.fl_str_mv |
CYBER-PHYSICAL SYSTEMS INDUSTRY 4.0 SCHEDULING DECISIONAL DNA KNOWLEDGE REPRESENTATION |
topic |
CYBER-PHYSICAL SYSTEMS INDUSTRY 4.0 SCHEDULING DECISIONAL DNA KNOWLEDGE REPRESENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Industry 4.0 raises the need for a closer integration of management systems in manufacturing companies. Such process is driven by Cyber-Physical Systems (CPS) and the Internet of Things (IoT). Starting from the potential of these technologies, a knowledge architecture aimed at addressing scheduling problems is proposed. Scheduling-support systems generally do not solve real-world scheduling problems, being instead only capable of solving simplified versions, producing solutions that human schedulers adapt to real problems. The architecture aims to record and consolidate the empirical knowledge generated by the solutions of actual scheduling problems. In this way, it summarizes the implicit criteria used by human schedulers. The architecture presented here records this knowledge in data structures compatible with the structure of scheduling problems. In further iterations this knowledge crystallizes into a sound and smart structure. Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina |
description |
Industry 4.0 raises the need for a closer integration of management systems in manufacturing companies. Such process is driven by Cyber-Physical Systems (CPS) and the Internet of Things (IoT). Starting from the potential of these technologies, a knowledge architecture aimed at addressing scheduling problems is proposed. Scheduling-support systems generally do not solve real-world scheduling problems, being instead only capable of solving simplified versions, producing solutions that human schedulers adapt to real problems. The architecture aims to record and consolidate the empirical knowledge generated by the solutions of actual scheduling problems. In this way, it summarizes the implicit criteria used by human schedulers. The architecture presented here records this knowledge in data structures compatible with the structure of scheduling problems. In further iterations this knowledge crystallizes into a sound and smart structure. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/165422 Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Knowledge representation in Industry 4.0 Scheduling problems; Taylor & Francis Ltd; International Journal Of Computer Integrated Manufacturing; 2022; 10-1-2022; 5-25 0951-192X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/165422 |
identifier_str_mv |
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Knowledge representation in Industry 4.0 Scheduling problems; Taylor & Francis Ltd; International Journal Of Computer Integrated Manufacturing; 2022; 10-1-2022; 5-25 0951-192X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/action/journalInformation?journalCode=tcim20 info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1080/0951192X.2021.2022760 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083074195980288 |
score |
13.22299 |