Critical pairs of sequences of a mixed frame potential

Autores
Carrizo, Ivana; Heineken, Sigrid Bettina
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N.
Fil: Carrizo, Ivana. Universidad de Viena; Austria
Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
FINITE FRAMES
FRAME POTENTIAL
DUAL FRAMES
LAGRANGE MULTIPLIERS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18830

id CONICETDig_d45c0969c09c19034ee8f88b6a974342
oai_identifier_str oai:ri.conicet.gov.ar:11336/18830
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Critical pairs of sequences of a mixed frame potentialCarrizo, IvanaHeineken, Sigrid BettinaFINITE FRAMESFRAME POTENTIALDUAL FRAMESLAGRANGE MULTIPLIERShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N.Fil: Carrizo, Ivana. Universidad de Viena; AustriaFil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaTaylor & Francis2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18830Carrizo, Ivana; Heineken, Sigrid Bettina; Critical pairs of sequences of a mixed frame potential; Taylor & Francis; Numerical Functional Analysis And Optimization; 35; 6; 9-2014; 665-6840163-0563CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2013.837483info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2013.837483info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:40Zoai:ri.conicet.gov.ar:11336/18830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:41.152CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Critical pairs of sequences of a mixed frame potential
title Critical pairs of sequences of a mixed frame potential
spellingShingle Critical pairs of sequences of a mixed frame potential
Carrizo, Ivana
FINITE FRAMES
FRAME POTENTIAL
DUAL FRAMES
LAGRANGE MULTIPLIERS
title_short Critical pairs of sequences of a mixed frame potential
title_full Critical pairs of sequences of a mixed frame potential
title_fullStr Critical pairs of sequences of a mixed frame potential
title_full_unstemmed Critical pairs of sequences of a mixed frame potential
title_sort Critical pairs of sequences of a mixed frame potential
dc.creator.none.fl_str_mv Carrizo, Ivana
Heineken, Sigrid Bettina
author Carrizo, Ivana
author_facet Carrizo, Ivana
Heineken, Sigrid Bettina
author_role author
author2 Heineken, Sigrid Bettina
author2_role author
dc.subject.none.fl_str_mv FINITE FRAMES
FRAME POTENTIAL
DUAL FRAMES
LAGRANGE MULTIPLIERS
topic FINITE FRAMES
FRAME POTENTIAL
DUAL FRAMES
LAGRANGE MULTIPLIERS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N.
Fil: Carrizo, Ivana. Universidad de Viena; Austria
Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18830
Carrizo, Ivana; Heineken, Sigrid Bettina; Critical pairs of sequences of a mixed frame potential; Taylor & Francis; Numerical Functional Analysis And Optimization; 35; 6; 9-2014; 665-684
0163-0563
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18830
identifier_str_mv Carrizo, Ivana; Heineken, Sigrid Bettina; Critical pairs of sequences of a mixed frame potential; Taylor & Francis; Numerical Functional Analysis And Optimization; 35; 6; 9-2014; 665-684
0163-0563
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2013.837483
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2013.837483
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613724057370624
score 13.070432