Critical pairs of sequences of a mixed frame potential
- Autores
- Carrizo, Ivana; Heineken, Sigrid Bettina
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N.
Fil: Carrizo, Ivana. Universidad de Viena; Austria
Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
FINITE FRAMES
FRAME POTENTIAL
DUAL FRAMES
LAGRANGE MULTIPLIERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18830
Ver los metadatos del registro completo
id |
CONICETDig_d45c0969c09c19034ee8f88b6a974342 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18830 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Critical pairs of sequences of a mixed frame potentialCarrizo, IvanaHeineken, Sigrid BettinaFINITE FRAMESFRAME POTENTIALDUAL FRAMESLAGRANGE MULTIPLIERShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N.Fil: Carrizo, Ivana. Universidad de Viena; AustriaFil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaTaylor & Francis2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18830Carrizo, Ivana; Heineken, Sigrid Bettina; Critical pairs of sequences of a mixed frame potential; Taylor & Francis; Numerical Functional Analysis And Optimization; 35; 6; 9-2014; 665-6840163-0563CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2013.837483info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2013.837483info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:40Zoai:ri.conicet.gov.ar:11336/18830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:41.152CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Critical pairs of sequences of a mixed frame potential |
title |
Critical pairs of sequences of a mixed frame potential |
spellingShingle |
Critical pairs of sequences of a mixed frame potential Carrizo, Ivana FINITE FRAMES FRAME POTENTIAL DUAL FRAMES LAGRANGE MULTIPLIERS |
title_short |
Critical pairs of sequences of a mixed frame potential |
title_full |
Critical pairs of sequences of a mixed frame potential |
title_fullStr |
Critical pairs of sequences of a mixed frame potential |
title_full_unstemmed |
Critical pairs of sequences of a mixed frame potential |
title_sort |
Critical pairs of sequences of a mixed frame potential |
dc.creator.none.fl_str_mv |
Carrizo, Ivana Heineken, Sigrid Bettina |
author |
Carrizo, Ivana |
author_facet |
Carrizo, Ivana Heineken, Sigrid Bettina |
author_role |
author |
author2 |
Heineken, Sigrid Bettina |
author2_role |
author |
dc.subject.none.fl_str_mv |
FINITE FRAMES FRAME POTENTIAL DUAL FRAMES LAGRANGE MULTIPLIERS |
topic |
FINITE FRAMES FRAME POTENTIAL DUAL FRAMES LAGRANGE MULTIPLIERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N. Fil: Carrizo, Ivana. Universidad de Viena; Austria Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18830 Carrizo, Ivana; Heineken, Sigrid Bettina; Critical pairs of sequences of a mixed frame potential; Taylor & Francis; Numerical Functional Analysis And Optimization; 35; 6; 9-2014; 665-684 0163-0563 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18830 |
identifier_str_mv |
Carrizo, Ivana; Heineken, Sigrid Bettina; Critical pairs of sequences of a mixed frame potential; Taylor & Francis; Numerical Functional Analysis And Optimization; 35; 6; 9-2014; 665-684 0163-0563 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2013.837483 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2013.837483 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613724057370624 |
score |
13.070432 |