Minimization of convex functionals over frame operators
- Autores
- Massey, Pedro Gustavo; Ruiz, Mariano Andres
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina - Materia
-
Frames
Frame Potential
Majorization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19429
Ver los metadatos del registro completo
id |
CONICETDig_1e1156cb93563f6156a91515f3848114 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19429 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Minimization of convex functionals over frame operatorsMassey, Pedro GustavoRuiz, Mariano AndresFramesFrame PotentialMajorizationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaSpringer2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19429Massey, Pedro Gustavo; Ruiz, Mariano Andres; Minimization of convex functionals over frame operators; Springer; Advances In Computational Mathematics; 32; 2; 2-2010; 131-1531019-7168CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10444-008-9092-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s10444-008-9092-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0710.1258info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:24Zoai:ri.conicet.gov.ar:11336/19429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:25.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Minimization of convex functionals over frame operators |
title |
Minimization of convex functionals over frame operators |
spellingShingle |
Minimization of convex functionals over frame operators Massey, Pedro Gustavo Frames Frame Potential Majorization |
title_short |
Minimization of convex functionals over frame operators |
title_full |
Minimization of convex functionals over frame operators |
title_fullStr |
Minimization of convex functionals over frame operators |
title_full_unstemmed |
Minimization of convex functionals over frame operators |
title_sort |
Minimization of convex functionals over frame operators |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Ruiz, Mariano Andres |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Ruiz, Mariano Andres |
author_role |
author |
author2 |
Ruiz, Mariano Andres |
author2_role |
author |
dc.subject.none.fl_str_mv |
Frames Frame Potential Majorization |
topic |
Frames Frame Potential Majorization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one. Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina |
description |
We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19429 Massey, Pedro Gustavo; Ruiz, Mariano Andres; Minimization of convex functionals over frame operators; Springer; Advances In Computational Mathematics; 32; 2; 2-2010; 131-153 1019-7168 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19429 |
identifier_str_mv |
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Minimization of convex functionals over frame operators; Springer; Advances In Computational Mathematics; 32; 2; 2-2010; 131-153 1019-7168 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10444-008-9092-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10444-008-9092-5 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0710.1258 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606001994956800 |
score |
13.001348 |