Minimization of convex functionals over frame operators

Autores
Massey, Pedro Gustavo; Ruiz, Mariano Andres
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Materia
Frames
Frame Potential
Majorization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19429

id CONICETDig_1e1156cb93563f6156a91515f3848114
oai_identifier_str oai:ri.conicet.gov.ar:11336/19429
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Minimization of convex functionals over frame operatorsMassey, Pedro GustavoRuiz, Mariano AndresFramesFrame PotentialMajorizationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one.Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaSpringer2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19429Massey, Pedro Gustavo; Ruiz, Mariano Andres; Minimization of convex functionals over frame operators; Springer; Advances In Computational Mathematics; 32; 2; 2-2010; 131-1531019-7168CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10444-008-9092-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s10444-008-9092-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0710.1258info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:24Zoai:ri.conicet.gov.ar:11336/19429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:25.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Minimization of convex functionals over frame operators
title Minimization of convex functionals over frame operators
spellingShingle Minimization of convex functionals over frame operators
Massey, Pedro Gustavo
Frames
Frame Potential
Majorization
title_short Minimization of convex functionals over frame operators
title_full Minimization of convex functionals over frame operators
title_fullStr Minimization of convex functionals over frame operators
title_full_unstemmed Minimization of convex functionals over frame operators
title_sort Minimization of convex functionals over frame operators
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
Ruiz, Mariano Andres
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
Ruiz, Mariano Andres
author_role author
author2 Ruiz, Mariano Andres
author2_role author
dc.subject.none.fl_str_mv Frames
Frame Potential
Majorization
topic Frames
Frame Potential
Majorization
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one.
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
description We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one.
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19429
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Minimization of convex functionals over frame operators; Springer; Advances In Computational Mathematics; 32; 2; 2-2010; 131-153
1019-7168
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19429
identifier_str_mv Massey, Pedro Gustavo; Ruiz, Mariano Andres; Minimization of convex functionals over frame operators; Springer; Advances In Computational Mathematics; 32; 2; 2-2010; 131-153
1019-7168
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10444-008-9092-5
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10444-008-9092-5
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0710.1258
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606001994956800
score 13.001348