Exploring run-and-tumble movement in confined settings through simulation

Autores
Zamora, Darío Javier; Artuso, Roberto
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain.
Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Università Degli Studi Dell'insubria; Italia
Fil: Artuso, Roberto. Università Degli Studi Dell'insubria; Italia. Istituto Nazionale di Fisica Nucleare; Italia
Materia
Brownian dynamic simulations
Statistics
Dynamical systems
Probability theory
Complex systems theory
Chemotaxis
Random walks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256606

id CONICETDig_d43a606ea440d16a27f5b4df993b12c3
oai_identifier_str oai:ri.conicet.gov.ar:11336/256606
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exploring run-and-tumble movement in confined settings through simulationZamora, Darío JavierArtuso, RobertoBrownian dynamic simulationsStatisticsDynamical systemsProbability theoryComplex systems theoryChemotaxisRandom walkshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain.Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Università Degli Studi Dell'insubria; ItaliaFil: Artuso, Roberto. Università Degli Studi Dell'insubria; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaAmerican Institute of Physics2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256606Zamora, Darío Javier; Artuso, Roberto; Exploring run-and-tumble movement in confined settings through simulation; American Institute of Physics; Journal of Chemical Physics; 161; 11; 9-2024; 1-170021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/161/11/114107/3312649/Exploring-run-and-tumble-movement-in-confinedinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0221781info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:52Zoai:ri.conicet.gov.ar:11336/256606instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:52.711CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exploring run-and-tumble movement in confined settings through simulation
title Exploring run-and-tumble movement in confined settings through simulation
spellingShingle Exploring run-and-tumble movement in confined settings through simulation
Zamora, Darío Javier
Brownian dynamic simulations
Statistics
Dynamical systems
Probability theory
Complex systems theory
Chemotaxis
Random walks
title_short Exploring run-and-tumble movement in confined settings through simulation
title_full Exploring run-and-tumble movement in confined settings through simulation
title_fullStr Exploring run-and-tumble movement in confined settings through simulation
title_full_unstemmed Exploring run-and-tumble movement in confined settings through simulation
title_sort Exploring run-and-tumble movement in confined settings through simulation
dc.creator.none.fl_str_mv Zamora, Darío Javier
Artuso, Roberto
author Zamora, Darío Javier
author_facet Zamora, Darío Javier
Artuso, Roberto
author_role author
author2 Artuso, Roberto
author2_role author
dc.subject.none.fl_str_mv Brownian dynamic simulations
Statistics
Dynamical systems
Probability theory
Complex systems theory
Chemotaxis
Random walks
topic Brownian dynamic simulations
Statistics
Dynamical systems
Probability theory
Complex systems theory
Chemotaxis
Random walks
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain.
Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Università Degli Studi Dell'insubria; Italia
Fil: Artuso, Roberto. Università Degli Studi Dell'insubria; Italia. Istituto Nazionale di Fisica Nucleare; Italia
description Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain.
publishDate 2024
dc.date.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256606
Zamora, Darío Javier; Artuso, Roberto; Exploring run-and-tumble movement in confined settings through simulation; American Institute of Physics; Journal of Chemical Physics; 161; 11; 9-2024; 1-17
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256606
identifier_str_mv Zamora, Darío Javier; Artuso, Roberto; Exploring run-and-tumble movement in confined settings through simulation; American Institute of Physics; Journal of Chemical Physics; 161; 11; 9-2024; 1-17
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/161/11/114107/3312649/Exploring-run-and-tumble-movement-in-confined
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0221781
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613593131122688
score 13.069144