Exploring run-and-tumble movement in confined settings through simulation
- Autores
- Zamora, Darío Javier; Artuso, Roberto
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain.
Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Università Degli Studi Dell'insubria; Italia
Fil: Artuso, Roberto. Università Degli Studi Dell'insubria; Italia. Istituto Nazionale di Fisica Nucleare; Italia - Materia
-
Brownian dynamic simulations
Statistics
Dynamical systems
Probability theory
Complex systems theory
Chemotaxis
Random walks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256606
Ver los metadatos del registro completo
id |
CONICETDig_d43a606ea440d16a27f5b4df993b12c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256606 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring run-and-tumble movement in confined settings through simulationZamora, Darío JavierArtuso, RobertoBrownian dynamic simulationsStatisticsDynamical systemsProbability theoryComplex systems theoryChemotaxisRandom walkshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain.Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Università Degli Studi Dell'insubria; ItaliaFil: Artuso, Roberto. Università Degli Studi Dell'insubria; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaAmerican Institute of Physics2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256606Zamora, Darío Javier; Artuso, Roberto; Exploring run-and-tumble movement in confined settings through simulation; American Institute of Physics; Journal of Chemical Physics; 161; 11; 9-2024; 1-170021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/161/11/114107/3312649/Exploring-run-and-tumble-movement-in-confinedinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0221781info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:52Zoai:ri.conicet.gov.ar:11336/256606instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:52.711CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring run-and-tumble movement in confined settings through simulation |
title |
Exploring run-and-tumble movement in confined settings through simulation |
spellingShingle |
Exploring run-and-tumble movement in confined settings through simulation Zamora, Darío Javier Brownian dynamic simulations Statistics Dynamical systems Probability theory Complex systems theory Chemotaxis Random walks |
title_short |
Exploring run-and-tumble movement in confined settings through simulation |
title_full |
Exploring run-and-tumble movement in confined settings through simulation |
title_fullStr |
Exploring run-and-tumble movement in confined settings through simulation |
title_full_unstemmed |
Exploring run-and-tumble movement in confined settings through simulation |
title_sort |
Exploring run-and-tumble movement in confined settings through simulation |
dc.creator.none.fl_str_mv |
Zamora, Darío Javier Artuso, Roberto |
author |
Zamora, Darío Javier |
author_facet |
Zamora, Darío Javier Artuso, Roberto |
author_role |
author |
author2 |
Artuso, Roberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Brownian dynamic simulations Statistics Dynamical systems Probability theory Complex systems theory Chemotaxis Random walks |
topic |
Brownian dynamic simulations Statistics Dynamical systems Probability theory Complex systems theory Chemotaxis Random walks |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain. Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Università Degli Studi Dell'insubria; Italia Fil: Artuso, Roberto. Università Degli Studi Dell'insubria; Italia. Istituto Nazionale di Fisica Nucleare; Italia |
description |
Motion in bounded domains is a fundamental concept in various fields, including billiard dynamics and random walks on finite lattices, and has important applications in physics, ecology, and biology. An important universal property related to the average return time to the boundary, the Mean Path Length Theorem (MPLT), has been proposed theoretically and experimentally confirmed in various contexts. We investigated a wide range of mechanisms that lead to deviations from this universal behavior, such as boundary effects, reorientation, and memory processes. This study investigates the dynamics of run-and-tumble particles within a confined two-dimensional circular domain. Through a combination of theoretical approaches and numerical simulations, we validate the MPLT under uniform and isotropic particle inflow conditions. This research demonstrates that although the MPLT is generally applicable for different step length distributions, deviations occur for non-uniform angular distributions, non-elastic boundary conditions, or memory processes. These results underline the crucial influence of boundary interactions and angular dynamics on the behavior of particles in confined spaces. Our results provide new insights into the geometry and dynamics of motion in confined spaces and contribute to a better understanding of a broad spectrum of phenomena ranging from the motion of bacteria to neutron transport. This type of analysis is crucial in situations where inhomogeneity occurs, such as multiple real-world scenarios within a limited domain. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256606 Zamora, Darío Javier; Artuso, Roberto; Exploring run-and-tumble movement in confined settings through simulation; American Institute of Physics; Journal of Chemical Physics; 161; 11; 9-2024; 1-17 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256606 |
identifier_str_mv |
Zamora, Darío Javier; Artuso, Roberto; Exploring run-and-tumble movement in confined settings through simulation; American Institute of Physics; Journal of Chemical Physics; 161; 11; 9-2024; 1-17 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jcp/article/161/11/114107/3312649/Exploring-run-and-tumble-movement-in-confined info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0221781 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613593131122688 |
score |
13.069144 |