Dynamical symmetries of Markov processes with multiplicative white noise

Autores
Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; Arenas, Zochil González; Lozano, Gustavo Sergio
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau-Lifshitz-Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.
Fil: Aron, Camille. Katholikie Universiteit Leuven; Bélgica. University Of Princeton; Estados Unidos
Fil: Barci, Daniel G.. Universidade Do Estado de Rio Do Janeiro; Brasil
Fil: Cugliandolo, Leticia F.. Universite Paris Sorbonne; Francia
Fil: Arenas, Zochil González. Universidade Do Estado de Rio Do Janeiro; Brasil
Fil: Lozano, Gustavo Sergio. Universite Paris Sorbonne; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Brownian Motion
Driven Diffusive Systems (Theory)
Fluctuations (Theory)
Stochastic Processes (Theory)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17499

id CONICETDig_c4573ec58915fb85d774dd4cf2ecd35c
oai_identifier_str oai:ri.conicet.gov.ar:11336/17499
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamical symmetries of Markov processes with multiplicative white noiseAron, CamilleBarci, Daniel G.Cugliandolo, Leticia F.Arenas, Zochil GonzálezLozano, Gustavo SergioBrownian MotionDriven Diffusive Systems (Theory)Fluctuations (Theory)Stochastic Processes (Theory)https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau-Lifshitz-Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.Fil: Aron, Camille. Katholikie Universiteit Leuven; Bélgica. University Of Princeton; Estados UnidosFil: Barci, Daniel G.. Universidade Do Estado de Rio Do Janeiro; BrasilFil: Cugliandolo, Leticia F.. Universite Paris Sorbonne; FranciaFil: Arenas, Zochil González. Universidade Do Estado de Rio Do Janeiro; BrasilFil: Lozano, Gustavo Sergio. Universite Paris Sorbonne; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaIOP Publishing2016-05-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17499Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; Arenas, Zochil González; Lozano, Gustavo Sergio; Dynamical symmetries of Markov processes with multiplicative white noise; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2016; 5; 19-5-20161742-5468enginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2016/05/053207info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.7564info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:34Zoai:ri.conicet.gov.ar:11336/17499instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:35.024CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamical symmetries of Markov processes with multiplicative white noise
title Dynamical symmetries of Markov processes with multiplicative white noise
spellingShingle Dynamical symmetries of Markov processes with multiplicative white noise
Aron, Camille
Brownian Motion
Driven Diffusive Systems (Theory)
Fluctuations (Theory)
Stochastic Processes (Theory)
title_short Dynamical symmetries of Markov processes with multiplicative white noise
title_full Dynamical symmetries of Markov processes with multiplicative white noise
title_fullStr Dynamical symmetries of Markov processes with multiplicative white noise
title_full_unstemmed Dynamical symmetries of Markov processes with multiplicative white noise
title_sort Dynamical symmetries of Markov processes with multiplicative white noise
dc.creator.none.fl_str_mv Aron, Camille
Barci, Daniel G.
Cugliandolo, Leticia F.
Arenas, Zochil González
Lozano, Gustavo Sergio
author Aron, Camille
author_facet Aron, Camille
Barci, Daniel G.
Cugliandolo, Leticia F.
Arenas, Zochil González
Lozano, Gustavo Sergio
author_role author
author2 Barci, Daniel G.
Cugliandolo, Leticia F.
Arenas, Zochil González
Lozano, Gustavo Sergio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Brownian Motion
Driven Diffusive Systems (Theory)
Fluctuations (Theory)
Stochastic Processes (Theory)
topic Brownian Motion
Driven Diffusive Systems (Theory)
Fluctuations (Theory)
Stochastic Processes (Theory)
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau-Lifshitz-Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.
Fil: Aron, Camille. Katholikie Universiteit Leuven; Bélgica. University Of Princeton; Estados Unidos
Fil: Barci, Daniel G.. Universidade Do Estado de Rio Do Janeiro; Brasil
Fil: Cugliandolo, Leticia F.. Universite Paris Sorbonne; Francia
Fil: Arenas, Zochil González. Universidade Do Estado de Rio Do Janeiro; Brasil
Fil: Lozano, Gustavo Sergio. Universite Paris Sorbonne; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau-Lifshitz-Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17499
Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; Arenas, Zochil González; Lozano, Gustavo Sergio; Dynamical symmetries of Markov processes with multiplicative white noise; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2016; 5; 19-5-2016
1742-5468
url http://hdl.handle.net/11336/17499
identifier_str_mv Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; Arenas, Zochil González; Lozano, Gustavo Sergio; Dynamical symmetries of Markov processes with multiplicative white noise; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2016; 5; 19-5-2016
1742-5468
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2016/05/053207
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.7564
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980157001826304
score 12.993085