Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)

Autores
Grunbaum, F. A.; Pacharoni, Maria Ines; Tirao, Juan Alfredo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The random walk to be considered takes place in the - spherical dual of the group U(n + 1), for a xed nite dimensional irreducible representation of U(n). The transition matrix comes from the three term recursion relation satised by a sequence of matrix valued orthogonal polynomials built up from the irreducible spherical functions of type of SU(n + 1). One of the stochastic models is an urn model and the other is a Young diagram model.
Fil: Grunbaum, F. A.. University Of California Berkeley; Estados Unidos
Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
Random Walks
Spherical Functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10983

id CONICETDig_9491f6e4885b9770d5e74c3aa7b3d2b4
oai_identifier_str oai:ri.conicet.gov.ar:11336/10983
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)Grunbaum, F. A.Pacharoni, Maria InesTirao, Juan AlfredoRandom WalksSpherical Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The random walk to be considered takes place in the - spherical dual of the group U(n + 1), for a xed nite dimensional irreducible representation of U(n). The transition matrix comes from the three term recursion relation satised by a sequence of matrix valued orthogonal polynomials built up from the irreducible spherical functions of type of SU(n + 1). One of the stochastic models is an urn model and the other is a Young diagram model.Fil: Grunbaum, F. A.. University Of California Berkeley; Estados UnidosFil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer Heidelberg2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10983Grunbaum, F. A.; Pacharoni, Maria Ines; Tirao, Juan Alfredo; Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1); Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 192; 3; 5-2013; 447-4730373-3114enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-011-0232-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-011-0232-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1010.0720info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:20Zoai:ri.conicet.gov.ar:11336/10983instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:20.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
title Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
spellingShingle Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
Grunbaum, F. A.
Random Walks
Spherical Functions
title_short Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
title_full Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
title_fullStr Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
title_full_unstemmed Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
title_sort Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1)
dc.creator.none.fl_str_mv Grunbaum, F. A.
Pacharoni, Maria Ines
Tirao, Juan Alfredo
author Grunbaum, F. A.
author_facet Grunbaum, F. A.
Pacharoni, Maria Ines
Tirao, Juan Alfredo
author_role author
author2 Pacharoni, Maria Ines
Tirao, Juan Alfredo
author2_role author
author
dc.subject.none.fl_str_mv Random Walks
Spherical Functions
topic Random Walks
Spherical Functions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The random walk to be considered takes place in the - spherical dual of the group U(n + 1), for a xed nite dimensional irreducible representation of U(n). The transition matrix comes from the three term recursion relation satised by a sequence of matrix valued orthogonal polynomials built up from the irreducible spherical functions of type of SU(n + 1). One of the stochastic models is an urn model and the other is a Young diagram model.
Fil: Grunbaum, F. A.. University Of California Berkeley; Estados Unidos
Fil: Pacharoni, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Tirao, Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description The random walk to be considered takes place in the - spherical dual of the group U(n + 1), for a xed nite dimensional irreducible representation of U(n). The transition matrix comes from the three term recursion relation satised by a sequence of matrix valued orthogonal polynomials built up from the irreducible spherical functions of type of SU(n + 1). One of the stochastic models is an urn model and the other is a Young diagram model.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10983
Grunbaum, F. A.; Pacharoni, Maria Ines; Tirao, Juan Alfredo; Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1); Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 192; 3; 5-2013; 447-473
0373-3114
url http://hdl.handle.net/11336/10983
identifier_str_mv Grunbaum, F. A.; Pacharoni, Maria Ines; Tirao, Juan Alfredo; Two stochastic models of a random walk in the U(n)-spherical duals of U(n+1); Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 192; 3; 5-2013; 447-473
0373-3114
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-011-0232-z
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-011-0232-z
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1010.0720
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082727663632384
score 13.221938