Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability
- Autores
- Gurdo, Nicolás; Novelli Poisson, Guido Fernando; Juárez, Angela Beatriz; Rios, Maria del Carmen; Galvagno, Miguel Angel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aims: To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS detoxification and bioethanol 2G production. Methods and Results: After adaptive evolution in acetic acid, a clone (Y8A) was selected for its tolerance to high acetic acid concentrations (13 g l−1) in batch cultures. Y8A was resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and Gluthatione S-transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a fermentation medium containing up to 8 g l−1 of acetic acid when compared to parental strain Y8. Conclusions: A multiple-stress-tolerant clone was obtained using adaptive evolution in acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative capacity, namely CAT and GST. Significance and Impact of the Study: We demonstrate that adaptive evolution used in S. cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the same time, our findings support the idea that tolerance to oxidative stress is the common basis for stress cotolerance, which is related to an increase in the specific enzymes CAT and GST but not in Superoxide dismutase, emphasizing the fact that detoxification of H2O2 and not O2˙ is a key condition for multiple stress tolerance in S. cerevisiae.
Fil: Gurdo, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Novelli Poisson, Guido Fernando. Universidad de Buenos Aires; Argentina
Fil: Juárez, Angela Beatriz. Universidad de Buenos Aires; Argentina
Fil: Rios de Molina, M.C.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Galvagno, Miguel Angel. Universidad de Buenos Aires; Argentina - Materia
-
ACETIC ACID
ADAPTIVE EVOLUTION
ANTIOXIDATIVE ENZYMES
BIOETHANOL 2G PRODUCTION
MULTIPLE TOLERANCE
ROBUSTNESS
SACCHAROMYCES CEREVISIAE
YEAST - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/94079
Ver los metadatos del registro completo
id |
CONICETDig_d22cc9e905667acb3a659457e030271c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/94079 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant abilityGurdo, NicolásNovelli Poisson, Guido FernandoJuárez, Angela BeatrizRios, Maria del CarmenGalvagno, Miguel AngelACETIC ACIDADAPTIVE EVOLUTIONANTIOXIDATIVE ENZYMESBIOETHANOL 2G PRODUCTIONMULTIPLE TOLERANCEROBUSTNESSSACCHAROMYCES CEREVISIAEYEASThttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Aims: To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS detoxification and bioethanol 2G production. Methods and Results: After adaptive evolution in acetic acid, a clone (Y8A) was selected for its tolerance to high acetic acid concentrations (13 g l−1) in batch cultures. Y8A was resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and Gluthatione S-transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a fermentation medium containing up to 8 g l−1 of acetic acid when compared to parental strain Y8. Conclusions: A multiple-stress-tolerant clone was obtained using adaptive evolution in acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative capacity, namely CAT and GST. Significance and Impact of the Study: We demonstrate that adaptive evolution used in S. cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the same time, our findings support the idea that tolerance to oxidative stress is the common basis for stress cotolerance, which is related to an increase in the specific enzymes CAT and GST but not in Superoxide dismutase, emphasizing the fact that detoxification of H2O2 and not O2˙ is a key condition for multiple stress tolerance in S. cerevisiae.Fil: Gurdo, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Novelli Poisson, Guido Fernando. Universidad de Buenos Aires; ArgentinaFil: Juárez, Angela Beatriz. Universidad de Buenos Aires; ArgentinaFil: Rios de Molina, M.C.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Galvagno, Miguel Angel. Universidad de Buenos Aires; ArgentinaWiley Blackwell Publishing, Inc2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94079Gurdo, Nicolás; Novelli Poisson, Guido Fernando; Juárez, Angela Beatriz; Rios, Maria del Carmen; Galvagno, Miguel Angel; Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability; Wiley Blackwell Publishing, Inc; Journal of Applied Microbiology; 125; 3; 9-2018; 766-7761364-5072CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://sfamjournals.onlinelibrary.wiley.com/doi/abs/10.1111/jam.13917info:eu-repo/semantics/altIdentifier/doi/10.1111/jam.13917info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:49:03Zoai:ri.conicet.gov.ar:11336/94079instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:49:04.042CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability |
title |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability |
spellingShingle |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability Gurdo, Nicolás ACETIC ACID ADAPTIVE EVOLUTION ANTIOXIDATIVE ENZYMES BIOETHANOL 2G PRODUCTION MULTIPLE TOLERANCE ROBUSTNESS SACCHAROMYCES CEREVISIAE YEAST |
title_short |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability |
title_full |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability |
title_fullStr |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability |
title_full_unstemmed |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability |
title_sort |
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability |
dc.creator.none.fl_str_mv |
Gurdo, Nicolás Novelli Poisson, Guido Fernando Juárez, Angela Beatriz Rios, Maria del Carmen Galvagno, Miguel Angel |
author |
Gurdo, Nicolás |
author_facet |
Gurdo, Nicolás Novelli Poisson, Guido Fernando Juárez, Angela Beatriz Rios, Maria del Carmen Galvagno, Miguel Angel |
author_role |
author |
author2 |
Novelli Poisson, Guido Fernando Juárez, Angela Beatriz Rios, Maria del Carmen Galvagno, Miguel Angel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ACETIC ACID ADAPTIVE EVOLUTION ANTIOXIDATIVE ENZYMES BIOETHANOL 2G PRODUCTION MULTIPLE TOLERANCE ROBUSTNESS SACCHAROMYCES CEREVISIAE YEAST |
topic |
ACETIC ACID ADAPTIVE EVOLUTION ANTIOXIDATIVE ENZYMES BIOETHANOL 2G PRODUCTION MULTIPLE TOLERANCE ROBUSTNESS SACCHAROMYCES CEREVISIAE YEAST |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Aims: To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS detoxification and bioethanol 2G production. Methods and Results: After adaptive evolution in acetic acid, a clone (Y8A) was selected for its tolerance to high acetic acid concentrations (13 g l−1) in batch cultures. Y8A was resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and Gluthatione S-transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a fermentation medium containing up to 8 g l−1 of acetic acid when compared to parental strain Y8. Conclusions: A multiple-stress-tolerant clone was obtained using adaptive evolution in acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative capacity, namely CAT and GST. Significance and Impact of the Study: We demonstrate that adaptive evolution used in S. cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the same time, our findings support the idea that tolerance to oxidative stress is the common basis for stress cotolerance, which is related to an increase in the specific enzymes CAT and GST but not in Superoxide dismutase, emphasizing the fact that detoxification of H2O2 and not O2˙ is a key condition for multiple stress tolerance in S. cerevisiae. Fil: Gurdo, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Novelli Poisson, Guido Fernando. Universidad de Buenos Aires; Argentina Fil: Juárez, Angela Beatriz. Universidad de Buenos Aires; Argentina Fil: Rios de Molina, M.C.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina Fil: Galvagno, Miguel Angel. Universidad de Buenos Aires; Argentina |
description |
Aims: To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS detoxification and bioethanol 2G production. Methods and Results: After adaptive evolution in acetic acid, a clone (Y8A) was selected for its tolerance to high acetic acid concentrations (13 g l−1) in batch cultures. Y8A was resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and Gluthatione S-transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a fermentation medium containing up to 8 g l−1 of acetic acid when compared to parental strain Y8. Conclusions: A multiple-stress-tolerant clone was obtained using adaptive evolution in acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative capacity, namely CAT and GST. Significance and Impact of the Study: We demonstrate that adaptive evolution used in S. cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the same time, our findings support the idea that tolerance to oxidative stress is the common basis for stress cotolerance, which is related to an increase in the specific enzymes CAT and GST but not in Superoxide dismutase, emphasizing the fact that detoxification of H2O2 and not O2˙ is a key condition for multiple stress tolerance in S. cerevisiae. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/94079 Gurdo, Nicolás; Novelli Poisson, Guido Fernando; Juárez, Angela Beatriz; Rios, Maria del Carmen; Galvagno, Miguel Angel; Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability; Wiley Blackwell Publishing, Inc; Journal of Applied Microbiology; 125; 3; 9-2018; 766-776 1364-5072 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/94079 |
identifier_str_mv |
Gurdo, Nicolás; Novelli Poisson, Guido Fernando; Juárez, Angela Beatriz; Rios, Maria del Carmen; Galvagno, Miguel Angel; Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability; Wiley Blackwell Publishing, Inc; Journal of Applied Microbiology; 125; 3; 9-2018; 766-776 1364-5072 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://sfamjournals.onlinelibrary.wiley.com/doi/abs/10.1111/jam.13917 info:eu-repo/semantics/altIdentifier/doi/10.1111/jam.13917 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083012232478720 |
score |
13.22299 |