Una inversa a derecha para el operador divergencia en dominios con cúspides

Autores
López García, Fernando
Año de publicación
2010
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Durán, Ricardo Guillermo
Descripción
En esta tesis estudiamos la existencia de soluciones del problema de la divergencia en dominios con cúspides exteriores. Es sabido que los resultados clásicos en espacios de Sobolev standard, los cuales son una herramienta básica para el análisis variacional de las ecuaciones de Stokes, no valen para este tipo de dominios. Una clase importante de dominios con cúspide exteriores es la de los Hölder-α, con 0 menor α menor 1. Primero, probamos que si Ω es un dominio Hölder-α plano simplemente conexo existen soluciones de div u = f en un espacio de Sobolev con peso apropiado. Los pesos considerados son potencias de la distancia al borde de dominio. Luego, para una clase particular de dominios Hölder-α acotados Ω ⊂ Rn , con cúspides exteriores de dimensión entera m ≤ n − 2, mostramos la existencia de soluciones en espacios de Sobolev con peso de la ecuación de divergencia. Los pesos considerados en este caso son potencias de la distancia a la cúspide. Este resultado es más fuerte que el que involucra la distancia a ∂Ω. También, obtenemos una versión de la desigualdad de Korn con peso para esta clase de dominios y pesos. Las potencias en los pesos de los resultados obtenidos en este trabajo resultan optimas. Como una aplicación de los resultados previos, probamos la existencia y unicidad de soluciones variacionales de las ecuaciones de Stokes en espacios de Sobolev con peso apropiados. Como consecuencia, obtenemos la existencia de una solución (u, p) ∈ H0^1 (Ω)^n × Lr (Ω), con r menor 2 dependiendo de la potencia de la cúspide, donde u denota la velocidad y p la presión. Por otro lado, damos condiciones suficientes para que una potencia de la distancia a un compacto esté en la clase de Muckenhoupt Ap . Este resultado es auxiliar en este trabajo aunque nos parece que tiene interés en sí mismo. Finalmente, definimos nuevos contraejemplos para el problema de la divergencia y la desigualdad de Korn en dominios cuspidales, donde las cúspides no son necesariamente
This thesis deals with solutions of the divergence equation on domains with external cusps. It is known that the classic results in standard Sobolev spaces, which are basic in the variational analysis of the Stokes equations, are not valid for this kind of domains. An important class of domains which could present external cusps is the Hölder-α, witho 0 minor than α minor than 1. First, we prove that if Ω is a planar simply connected Hölder-α domain there exist solutions of div u = f in appropriate weighted Sobolev spaces. The weights considered are powers of the distance to the boundary. Then, for particular bounded Hölder-α domains Ω ⊂ Rn which have cusps of integer dimension m ≤ n−2, we show existence of solutions of the divergence equation in weighted Sobolev spaces. The weights used in this case are powers of the distance to the cusp. It provides a result stronger that the one with the distance to ∂Ω. Also, we obtain weighted Korn type inequalities for this class of domains and weights. Moreover, we show that the powers of the distance in the results obtained in this thesis are optimal. As an application of the previous divergence results, we prove the well posedness of the Stokes equations in appropriate weighted Sobolev spaces. In consequence, we obtain the existence of a solution (u, p) ∈ H0^1 (Ω)^n × Lr (Ω) for some r minor than 2 depending on the power of the cusp, where u is the velocity and p the pressure. On the other hand, we give sufficient conditions in order to determinate when a power of the distance to a compact set belongs to the Muckenhoupt class Ap . In this thesis this is an auxiliary result, however, we consider it interesting in itself. Finally, we define new counterexamples for the divergence problem and Korn inequality on domains with external cusps arbitrarily narrow.
Fil: López García, Fernando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
OPERADOR DIVERGENCIA
DOMINIOS CON CUSPIDES EXTERIORES
ECUACIONES DE STOKES
DESIGUALDAD DE KORN
ESPACIOS DE SOBOLEV CON PESO
DIVERGENCES OPERATOR
DOMAINS WITH EXTERNAL CUSPS
STOKES EQUATIONS
KORN INEQUALITY
WEIGHTED SOBOLEV SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n4725_LopezGarcia

id BDUBAFCEN_85c6e71c307593302f470e0135669501
oai_identifier_str tesis:tesis_n4725_LopezGarcia
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Una inversa a derecha para el operador divergencia en dominios con cúspidesA right inverse of the divergence operator on domains with cuspsLópez García, FernandoOPERADOR DIVERGENCIADOMINIOS CON CUSPIDES EXTERIORESECUACIONES DE STOKESDESIGUALDAD DE KORNESPACIOS DE SOBOLEV CON PESODIVERGENCES OPERATORDOMAINS WITH EXTERNAL CUSPSSTOKES EQUATIONSKORN INEQUALITYWEIGHTED SOBOLEV SPACESEn esta tesis estudiamos la existencia de soluciones del problema de la divergencia en dominios con cúspides exteriores. Es sabido que los resultados clásicos en espacios de Sobolev standard, los cuales son una herramienta básica para el análisis variacional de las ecuaciones de Stokes, no valen para este tipo de dominios. Una clase importante de dominios con cúspide exteriores es la de los Hölder-α, con 0 menor α menor 1. Primero, probamos que si Ω es un dominio Hölder-α plano simplemente conexo existen soluciones de div u = f en un espacio de Sobolev con peso apropiado. Los pesos considerados son potencias de la distancia al borde de dominio. Luego, para una clase particular de dominios Hölder-α acotados Ω ⊂ Rn , con cúspides exteriores de dimensión entera m ≤ n − 2, mostramos la existencia de soluciones en espacios de Sobolev con peso de la ecuación de divergencia. Los pesos considerados en este caso son potencias de la distancia a la cúspide. Este resultado es más fuerte que el que involucra la distancia a ∂Ω. También, obtenemos una versión de la desigualdad de Korn con peso para esta clase de dominios y pesos. Las potencias en los pesos de los resultados obtenidos en este trabajo resultan optimas. Como una aplicación de los resultados previos, probamos la existencia y unicidad de soluciones variacionales de las ecuaciones de Stokes en espacios de Sobolev con peso apropiados. Como consecuencia, obtenemos la existencia de una solución (u, p) ∈ H0^1 (Ω)^n × Lr (Ω), con r menor 2 dependiendo de la potencia de la cúspide, donde u denota la velocidad y p la presión. Por otro lado, damos condiciones suficientes para que una potencia de la distancia a un compacto esté en la clase de Muckenhoupt Ap . Este resultado es auxiliar en este trabajo aunque nos parece que tiene interés en sí mismo. Finalmente, definimos nuevos contraejemplos para el problema de la divergencia y la desigualdad de Korn en dominios cuspidales, donde las cúspides no son necesariamenteThis thesis deals with solutions of the divergence equation on domains with external cusps. It is known that the classic results in standard Sobolev spaces, which are basic in the variational analysis of the Stokes equations, are not valid for this kind of domains. An important class of domains which could present external cusps is the Hölder-α, witho 0 minor than α minor than 1. First, we prove that if Ω is a planar simply connected Hölder-α domain there exist solutions of div u = f in appropriate weighted Sobolev spaces. The weights considered are powers of the distance to the boundary. Then, for particular bounded Hölder-α domains Ω ⊂ Rn which have cusps of integer dimension m ≤ n−2, we show existence of solutions of the divergence equation in weighted Sobolev spaces. The weights used in this case are powers of the distance to the cusp. It provides a result stronger that the one with the distance to ∂Ω. Also, we obtain weighted Korn type inequalities for this class of domains and weights. Moreover, we show that the powers of the distance in the results obtained in this thesis are optimal. As an application of the previous divergence results, we prove the well posedness of the Stokes equations in appropriate weighted Sobolev spaces. In consequence, we obtain the existence of a solution (u, p) ∈ H0^1 (Ω)^n × Lr (Ω) for some r minor than 2 depending on the power of the cusp, where u is the velocity and p the pressure. On the other hand, we give sufficient conditions in order to determinate when a power of the distance to a compact set belongs to the Muckenhoupt class Ap . In this thesis this is an auxiliary result, however, we consider it interesting in itself. Finally, we define new counterexamples for the divergence problem and Korn inequality on domains with external cusps arbitrarily narrow.Fil: López García, Fernando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesDurán, Ricardo Guillermo2010info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4725_LopezGarciaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-04T09:46:25Ztesis:tesis_n4725_LopezGarciaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:46:26.496Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Una inversa a derecha para el operador divergencia en dominios con cúspides
A right inverse of the divergence operator on domains with cusps
title Una inversa a derecha para el operador divergencia en dominios con cúspides
spellingShingle Una inversa a derecha para el operador divergencia en dominios con cúspides
López García, Fernando
OPERADOR DIVERGENCIA
DOMINIOS CON CUSPIDES EXTERIORES
ECUACIONES DE STOKES
DESIGUALDAD DE KORN
ESPACIOS DE SOBOLEV CON PESO
DIVERGENCES OPERATOR
DOMAINS WITH EXTERNAL CUSPS
STOKES EQUATIONS
KORN INEQUALITY
WEIGHTED SOBOLEV SPACES
title_short Una inversa a derecha para el operador divergencia en dominios con cúspides
title_full Una inversa a derecha para el operador divergencia en dominios con cúspides
title_fullStr Una inversa a derecha para el operador divergencia en dominios con cúspides
title_full_unstemmed Una inversa a derecha para el operador divergencia en dominios con cúspides
title_sort Una inversa a derecha para el operador divergencia en dominios con cúspides
dc.creator.none.fl_str_mv López García, Fernando
author López García, Fernando
author_facet López García, Fernando
author_role author
dc.contributor.none.fl_str_mv Durán, Ricardo Guillermo
dc.subject.none.fl_str_mv OPERADOR DIVERGENCIA
DOMINIOS CON CUSPIDES EXTERIORES
ECUACIONES DE STOKES
DESIGUALDAD DE KORN
ESPACIOS DE SOBOLEV CON PESO
DIVERGENCES OPERATOR
DOMAINS WITH EXTERNAL CUSPS
STOKES EQUATIONS
KORN INEQUALITY
WEIGHTED SOBOLEV SPACES
topic OPERADOR DIVERGENCIA
DOMINIOS CON CUSPIDES EXTERIORES
ECUACIONES DE STOKES
DESIGUALDAD DE KORN
ESPACIOS DE SOBOLEV CON PESO
DIVERGENCES OPERATOR
DOMAINS WITH EXTERNAL CUSPS
STOKES EQUATIONS
KORN INEQUALITY
WEIGHTED SOBOLEV SPACES
dc.description.none.fl_txt_mv En esta tesis estudiamos la existencia de soluciones del problema de la divergencia en dominios con cúspides exteriores. Es sabido que los resultados clásicos en espacios de Sobolev standard, los cuales son una herramienta básica para el análisis variacional de las ecuaciones de Stokes, no valen para este tipo de dominios. Una clase importante de dominios con cúspide exteriores es la de los Hölder-α, con 0 menor α menor 1. Primero, probamos que si Ω es un dominio Hölder-α plano simplemente conexo existen soluciones de div u = f en un espacio de Sobolev con peso apropiado. Los pesos considerados son potencias de la distancia al borde de dominio. Luego, para una clase particular de dominios Hölder-α acotados Ω ⊂ Rn , con cúspides exteriores de dimensión entera m ≤ n − 2, mostramos la existencia de soluciones en espacios de Sobolev con peso de la ecuación de divergencia. Los pesos considerados en este caso son potencias de la distancia a la cúspide. Este resultado es más fuerte que el que involucra la distancia a ∂Ω. También, obtenemos una versión de la desigualdad de Korn con peso para esta clase de dominios y pesos. Las potencias en los pesos de los resultados obtenidos en este trabajo resultan optimas. Como una aplicación de los resultados previos, probamos la existencia y unicidad de soluciones variacionales de las ecuaciones de Stokes en espacios de Sobolev con peso apropiados. Como consecuencia, obtenemos la existencia de una solución (u, p) ∈ H0^1 (Ω)^n × Lr (Ω), con r menor 2 dependiendo de la potencia de la cúspide, donde u denota la velocidad y p la presión. Por otro lado, damos condiciones suficientes para que una potencia de la distancia a un compacto esté en la clase de Muckenhoupt Ap . Este resultado es auxiliar en este trabajo aunque nos parece que tiene interés en sí mismo. Finalmente, definimos nuevos contraejemplos para el problema de la divergencia y la desigualdad de Korn en dominios cuspidales, donde las cúspides no son necesariamente
This thesis deals with solutions of the divergence equation on domains with external cusps. It is known that the classic results in standard Sobolev spaces, which are basic in the variational analysis of the Stokes equations, are not valid for this kind of domains. An important class of domains which could present external cusps is the Hölder-α, witho 0 minor than α minor than 1. First, we prove that if Ω is a planar simply connected Hölder-α domain there exist solutions of div u = f in appropriate weighted Sobolev spaces. The weights considered are powers of the distance to the boundary. Then, for particular bounded Hölder-α domains Ω ⊂ Rn which have cusps of integer dimension m ≤ n−2, we show existence of solutions of the divergence equation in weighted Sobolev spaces. The weights used in this case are powers of the distance to the cusp. It provides a result stronger that the one with the distance to ∂Ω. Also, we obtain weighted Korn type inequalities for this class of domains and weights. Moreover, we show that the powers of the distance in the results obtained in this thesis are optimal. As an application of the previous divergence results, we prove the well posedness of the Stokes equations in appropriate weighted Sobolev spaces. In consequence, we obtain the existence of a solution (u, p) ∈ H0^1 (Ω)^n × Lr (Ω) for some r minor than 2 depending on the power of the cusp, where u is the velocity and p the pressure. On the other hand, we give sufficient conditions in order to determinate when a power of the distance to a compact set belongs to the Muckenhoupt class Ap . In this thesis this is an auxiliary result, however, we consider it interesting in itself. Finally, we define new counterexamples for the divergence problem and Korn inequality on domains with external cusps arbitrarily narrow.
Fil: López García, Fernando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description En esta tesis estudiamos la existencia de soluciones del problema de la divergencia en dominios con cúspides exteriores. Es sabido que los resultados clásicos en espacios de Sobolev standard, los cuales son una herramienta básica para el análisis variacional de las ecuaciones de Stokes, no valen para este tipo de dominios. Una clase importante de dominios con cúspide exteriores es la de los Hölder-α, con 0 menor α menor 1. Primero, probamos que si Ω es un dominio Hölder-α plano simplemente conexo existen soluciones de div u = f en un espacio de Sobolev con peso apropiado. Los pesos considerados son potencias de la distancia al borde de dominio. Luego, para una clase particular de dominios Hölder-α acotados Ω ⊂ Rn , con cúspides exteriores de dimensión entera m ≤ n − 2, mostramos la existencia de soluciones en espacios de Sobolev con peso de la ecuación de divergencia. Los pesos considerados en este caso son potencias de la distancia a la cúspide. Este resultado es más fuerte que el que involucra la distancia a ∂Ω. También, obtenemos una versión de la desigualdad de Korn con peso para esta clase de dominios y pesos. Las potencias en los pesos de los resultados obtenidos en este trabajo resultan optimas. Como una aplicación de los resultados previos, probamos la existencia y unicidad de soluciones variacionales de las ecuaciones de Stokes en espacios de Sobolev con peso apropiados. Como consecuencia, obtenemos la existencia de una solución (u, p) ∈ H0^1 (Ω)^n × Lr (Ω), con r menor 2 dependiendo de la potencia de la cúspide, donde u denota la velocidad y p la presión. Por otro lado, damos condiciones suficientes para que una potencia de la distancia a un compacto esté en la clase de Muckenhoupt Ap . Este resultado es auxiliar en este trabajo aunque nos parece que tiene interés en sí mismo. Finalmente, definimos nuevos contraejemplos para el problema de la divergencia y la desigualdad de Korn en dominios cuspidales, donde las cúspides no son necesariamente
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n4725_LopezGarcia
url https://hdl.handle.net/20.500.12110/tesis_n4725_LopezGarcia
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340676378820609
score 12.623145