Tchakaloff’s theorem and k-integral polynomials in Banach spaces
- Autores
- Pinasco, Damian; Zalduendo, Ignacio Martin
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E.
Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zalduendo, Ignacio Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina - Materia
-
INTEGRAL POLYNOMIAL
NUCLEAR POLYNOMIAL
POLYNOMIALS ON BANACH SPACES
TCHAKALOFF’S THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72097
Ver los metadatos del registro completo
id |
CONICETDig_c77c052630c0cba3b0ad4d01790d7089 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72097 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tchakaloff’s theorem and k-integral polynomials in Banach spacesPinasco, DamianZalduendo, Ignacio MartinINTEGRAL POLYNOMIALNUCLEAR POLYNOMIALPOLYNOMIALS ON BANACH SPACESTCHAKALOFF’S THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E.Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zalduendo, Ignacio Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaAmerican Mathematical Society2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72097Pinasco, Damian; Zalduendo, Ignacio Martin; Tchakaloff’s theorem and k-integral polynomials in Banach spaces; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 8; 8-2017; 3395-34080002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/proc/13520info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2017-145-08/S0002-9939-2017-13520-5/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:31Zoai:ri.conicet.gov.ar:11336/72097instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:31.38CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces |
title |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces |
spellingShingle |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces Pinasco, Damian INTEGRAL POLYNOMIAL NUCLEAR POLYNOMIAL POLYNOMIALS ON BANACH SPACES TCHAKALOFF’S THEOREM |
title_short |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces |
title_full |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces |
title_fullStr |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces |
title_full_unstemmed |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces |
title_sort |
Tchakaloff’s theorem and k-integral polynomials in Banach spaces |
dc.creator.none.fl_str_mv |
Pinasco, Damian Zalduendo, Ignacio Martin |
author |
Pinasco, Damian |
author_facet |
Pinasco, Damian Zalduendo, Ignacio Martin |
author_role |
author |
author2 |
Zalduendo, Ignacio Martin |
author2_role |
author |
dc.subject.none.fl_str_mv |
INTEGRAL POLYNOMIAL NUCLEAR POLYNOMIAL POLYNOMIALS ON BANACH SPACES TCHAKALOFF’S THEOREM |
topic |
INTEGRAL POLYNOMIAL NUCLEAR POLYNOMIAL POLYNOMIALS ON BANACH SPACES TCHAKALOFF’S THEOREM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E. Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zalduendo, Ignacio Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina |
description |
Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72097 Pinasco, Damian; Zalduendo, Ignacio Martin; Tchakaloff’s theorem and k-integral polynomials in Banach spaces; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 8; 8-2017; 3395-3408 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72097 |
identifier_str_mv |
Pinasco, Damian; Zalduendo, Ignacio Martin; Tchakaloff’s theorem and k-integral polynomials in Banach spaces; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 8; 8-2017; 3395-3408 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/13520 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2017-145-08/S0002-9939-2017-13520-5/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614186346217472 |
score |
13.070432 |