Tchakaloff’s theorem and k-integral polynomials in Banach spaces

Autores
Pinasco, Damian; Zalduendo, Ignacio Martin
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E.
Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zalduendo, Ignacio Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
Materia
INTEGRAL POLYNOMIAL
NUCLEAR POLYNOMIAL
POLYNOMIALS ON BANACH SPACES
TCHAKALOFF’S THEOREM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72097

id CONICETDig_c77c052630c0cba3b0ad4d01790d7089
oai_identifier_str oai:ri.conicet.gov.ar:11336/72097
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tchakaloff’s theorem and k-integral polynomials in Banach spacesPinasco, DamianZalduendo, Ignacio MartinINTEGRAL POLYNOMIALNUCLEAR POLYNOMIALPOLYNOMIALS ON BANACH SPACESTCHAKALOFF’S THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E.Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zalduendo, Ignacio Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaAmerican Mathematical Society2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72097Pinasco, Damian; Zalduendo, Ignacio Martin; Tchakaloff’s theorem and k-integral polynomials in Banach spaces; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 8; 8-2017; 3395-34080002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/proc/13520info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2017-145-08/S0002-9939-2017-13520-5/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:31Zoai:ri.conicet.gov.ar:11336/72097instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:31.38CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tchakaloff’s theorem and k-integral polynomials in Banach spaces
title Tchakaloff’s theorem and k-integral polynomials in Banach spaces
spellingShingle Tchakaloff’s theorem and k-integral polynomials in Banach spaces
Pinasco, Damian
INTEGRAL POLYNOMIAL
NUCLEAR POLYNOMIAL
POLYNOMIALS ON BANACH SPACES
TCHAKALOFF’S THEOREM
title_short Tchakaloff’s theorem and k-integral polynomials in Banach spaces
title_full Tchakaloff’s theorem and k-integral polynomials in Banach spaces
title_fullStr Tchakaloff’s theorem and k-integral polynomials in Banach spaces
title_full_unstemmed Tchakaloff’s theorem and k-integral polynomials in Banach spaces
title_sort Tchakaloff’s theorem and k-integral polynomials in Banach spaces
dc.creator.none.fl_str_mv Pinasco, Damian
Zalduendo, Ignacio Martin
author Pinasco, Damian
author_facet Pinasco, Damian
Zalduendo, Ignacio Martin
author_role author
author2 Zalduendo, Ignacio Martin
author2_role author
dc.subject.none.fl_str_mv INTEGRAL POLYNOMIAL
NUCLEAR POLYNOMIAL
POLYNOMIALS ON BANACH SPACES
TCHAKALOFF’S THEOREM
topic INTEGRAL POLYNOMIAL
NUCLEAR POLYNOMIAL
POLYNOMIALS ON BANACH SPACES
TCHAKALOFF’S THEOREM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E.
Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zalduendo, Ignacio Martin. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
description Tchakaloff’s theorem gives a quadrature formula for polynomials of a given degree with respect to a compactly supported positive measure which is absolutely continuous with respect to Lebesgue measure. We study the validity of two possible analogues of Tchakaloff’s theorem in an infinite-dimensional Banach space E: a weak form valid when E has a Schauder basis, and a stronger form requiring conditions on the support of the measure as well as on the space E.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72097
Pinasco, Damian; Zalduendo, Ignacio Martin; Tchakaloff’s theorem and k-integral polynomials in Banach spaces; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 8; 8-2017; 3395-3408
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72097
identifier_str_mv Pinasco, Damian; Zalduendo, Ignacio Martin; Tchakaloff’s theorem and k-integral polynomials in Banach spaces; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 8; 8-2017; 3395-3408
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/13520
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2017-145-08/S0002-9939-2017-13520-5/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614186346217472
score 13.070432