Robust real-time optimization of a solid oxide fuel cell stack
- Autores
- Marchetti, Alejandro Gabriel; Gopalakrishnan, A.; Chachuat, B.; Bonvin, D.; Tsikonis, L.; Nakajo, A.; Wuillemin, Z.; Van Herle, J.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- On-line control and optimization can improve the efficiency of fuel cell systems, whilst simultaneously ensuring that the operation remains within a safe region. Also, fuel cells are subject to frequent variations in their power demand. This paper investigates the realtime optimization (RTO) of a solid oxide fuel cell (SOFC) stack. An optimization problem maximizing the efficiency subject to operating constraints is defined. Due to inevitable model inaccuracies, the open-loop implementation of optimal inputs evaluated off-line may be suboptimal, or worse, infeasible. Infeasibility can be avoided by controlling the constrained quantities. However, the constraints that determine optimal operation might switch with varying power demand, thus requiring a change in the regulator structure. In this paper, a control strategy that can handle plant-model mismatch and changing constraints in the face of varying power demand is presented and illustrated. The strategy consists in the integration of RTO and model predictive control (MPC). A lumped model of the SOFC is utilized at the RTO level. The measurements are not used to re-estimate the parameters of the SOFC model at different operating points, but to simply adapt the constraints in the optimization problem. The optimal solution generated by RTO is implemented using MPC that uses a step-response model in this case. Simulation results show that near-optimality can be obtained, and constraints are respected despite model inaccuracies and large variations in the power demand.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Gopalakrishnan, A.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Chachuat, B.. Imperial College London; Reino Unido
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Tsikonis, L.. Laboratoire d; Suiza
Fil: Nakajo, A.. Laboratoire d; Suiza
Fil: Wuillemin, Z.. Laboratoire d; Suiza
Fil: Van Herle, J.. Laboratoire d; Suiza - Materia
-
Real Time Optimization
Constraint Adaptation
Model Predictive Control
Fuel Cells - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15255
Ver los metadatos del registro completo
id |
CONICETDig_ceb276e830905271fe00de49c288823a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15255 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust real-time optimization of a solid oxide fuel cell stackMarchetti, Alejandro GabrielGopalakrishnan, A.Chachuat, B.Bonvin, D.Tsikonis, L.Nakajo, A.Wuillemin, Z.Van Herle, J.Real Time OptimizationConstraint AdaptationModel Predictive ControlFuel Cellshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2On-line control and optimization can improve the efficiency of fuel cell systems, whilst simultaneously ensuring that the operation remains within a safe region. Also, fuel cells are subject to frequent variations in their power demand. This paper investigates the realtime optimization (RTO) of a solid oxide fuel cell (SOFC) stack. An optimization problem maximizing the efficiency subject to operating constraints is defined. Due to inevitable model inaccuracies, the open-loop implementation of optimal inputs evaluated off-line may be suboptimal, or worse, infeasible. Infeasibility can be avoided by controlling the constrained quantities. However, the constraints that determine optimal operation might switch with varying power demand, thus requiring a change in the regulator structure. In this paper, a control strategy that can handle plant-model mismatch and changing constraints in the face of varying power demand is presented and illustrated. The strategy consists in the integration of RTO and model predictive control (MPC). A lumped model of the SOFC is utilized at the RTO level. The measurements are not used to re-estimate the parameters of the SOFC model at different operating points, but to simply adapt the constraints in the optimization problem. The optimal solution generated by RTO is implemented using MPC that uses a step-response model in this case. Simulation results show that near-optimality can be obtained, and constraints are respected despite model inaccuracies and large variations in the power demand.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Gopalakrishnan, A.. Ecole Polytechnique Federale de Lausanne; SuizaFil: Chachuat, B.. Imperial College London; Reino UnidoFil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; SuizaFil: Tsikonis, L.. Laboratoire d; SuizaFil: Nakajo, A.. Laboratoire d; SuizaFil: Wuillemin, Z.. Laboratoire d; SuizaFil: Van Herle, J.. Laboratoire d; SuizaAmerican Society of Mechanical Engineers2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15255Marchetti, Alejandro Gabriel; Gopalakrishnan, A.; Chachuat, B.; Bonvin, D.; Tsikonis, L.; et al.; Robust real-time optimization of a solid oxide fuel cell stack; American Society of Mechanical Engineers; Journal of Fuel Cell Science and Technology; 8; 5; 10-2011; 1-112381-68722381-6910enginfo:eu-repo/semantics/altIdentifier/doi/10.1115/1.4003976info:eu-repo/semantics/altIdentifier/url/http://electrochemical.asmedigitalcollection.asme.org/article.aspx?articleid=1472319info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:08Zoai:ri.conicet.gov.ar:11336/15255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:08.539CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust real-time optimization of a solid oxide fuel cell stack |
title |
Robust real-time optimization of a solid oxide fuel cell stack |
spellingShingle |
Robust real-time optimization of a solid oxide fuel cell stack Marchetti, Alejandro Gabriel Real Time Optimization Constraint Adaptation Model Predictive Control Fuel Cells |
title_short |
Robust real-time optimization of a solid oxide fuel cell stack |
title_full |
Robust real-time optimization of a solid oxide fuel cell stack |
title_fullStr |
Robust real-time optimization of a solid oxide fuel cell stack |
title_full_unstemmed |
Robust real-time optimization of a solid oxide fuel cell stack |
title_sort |
Robust real-time optimization of a solid oxide fuel cell stack |
dc.creator.none.fl_str_mv |
Marchetti, Alejandro Gabriel Gopalakrishnan, A. Chachuat, B. Bonvin, D. Tsikonis, L. Nakajo, A. Wuillemin, Z. Van Herle, J. |
author |
Marchetti, Alejandro Gabriel |
author_facet |
Marchetti, Alejandro Gabriel Gopalakrishnan, A. Chachuat, B. Bonvin, D. Tsikonis, L. Nakajo, A. Wuillemin, Z. Van Herle, J. |
author_role |
author |
author2 |
Gopalakrishnan, A. Chachuat, B. Bonvin, D. Tsikonis, L. Nakajo, A. Wuillemin, Z. Van Herle, J. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Real Time Optimization Constraint Adaptation Model Predictive Control Fuel Cells |
topic |
Real Time Optimization Constraint Adaptation Model Predictive Control Fuel Cells |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
On-line control and optimization can improve the efficiency of fuel cell systems, whilst simultaneously ensuring that the operation remains within a safe region. Also, fuel cells are subject to frequent variations in their power demand. This paper investigates the realtime optimization (RTO) of a solid oxide fuel cell (SOFC) stack. An optimization problem maximizing the efficiency subject to operating constraints is defined. Due to inevitable model inaccuracies, the open-loop implementation of optimal inputs evaluated off-line may be suboptimal, or worse, infeasible. Infeasibility can be avoided by controlling the constrained quantities. However, the constraints that determine optimal operation might switch with varying power demand, thus requiring a change in the regulator structure. In this paper, a control strategy that can handle plant-model mismatch and changing constraints in the face of varying power demand is presented and illustrated. The strategy consists in the integration of RTO and model predictive control (MPC). A lumped model of the SOFC is utilized at the RTO level. The measurements are not used to re-estimate the parameters of the SOFC model at different operating points, but to simply adapt the constraints in the optimization problem. The optimal solution generated by RTO is implemented using MPC that uses a step-response model in this case. Simulation results show that near-optimality can be obtained, and constraints are respected despite model inaccuracies and large variations in the power demand. Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina Fil: Gopalakrishnan, A.. Ecole Polytechnique Federale de Lausanne; Suiza Fil: Chachuat, B.. Imperial College London; Reino Unido Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Suiza Fil: Tsikonis, L.. Laboratoire d; Suiza Fil: Nakajo, A.. Laboratoire d; Suiza Fil: Wuillemin, Z.. Laboratoire d; Suiza Fil: Van Herle, J.. Laboratoire d; Suiza |
description |
On-line control and optimization can improve the efficiency of fuel cell systems, whilst simultaneously ensuring that the operation remains within a safe region. Also, fuel cells are subject to frequent variations in their power demand. This paper investigates the realtime optimization (RTO) of a solid oxide fuel cell (SOFC) stack. An optimization problem maximizing the efficiency subject to operating constraints is defined. Due to inevitable model inaccuracies, the open-loop implementation of optimal inputs evaluated off-line may be suboptimal, or worse, infeasible. Infeasibility can be avoided by controlling the constrained quantities. However, the constraints that determine optimal operation might switch with varying power demand, thus requiring a change in the regulator structure. In this paper, a control strategy that can handle plant-model mismatch and changing constraints in the face of varying power demand is presented and illustrated. The strategy consists in the integration of RTO and model predictive control (MPC). A lumped model of the SOFC is utilized at the RTO level. The measurements are not used to re-estimate the parameters of the SOFC model at different operating points, but to simply adapt the constraints in the optimization problem. The optimal solution generated by RTO is implemented using MPC that uses a step-response model in this case. Simulation results show that near-optimality can be obtained, and constraints are respected despite model inaccuracies and large variations in the power demand. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15255 Marchetti, Alejandro Gabriel; Gopalakrishnan, A.; Chachuat, B.; Bonvin, D.; Tsikonis, L.; et al.; Robust real-time optimization of a solid oxide fuel cell stack; American Society of Mechanical Engineers; Journal of Fuel Cell Science and Technology; 8; 5; 10-2011; 1-11 2381-6872 2381-6910 |
url |
http://hdl.handle.net/11336/15255 |
identifier_str_mv |
Marchetti, Alejandro Gabriel; Gopalakrishnan, A.; Chachuat, B.; Bonvin, D.; Tsikonis, L.; et al.; Robust real-time optimization of a solid oxide fuel cell stack; American Society of Mechanical Engineers; Journal of Fuel Cell Science and Technology; 8; 5; 10-2011; 1-11 2381-6872 2381-6910 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1115/1.4003976 info:eu-repo/semantics/altIdentifier/url/http://electrochemical.asmedigitalcollection.asme.org/article.aspx?articleid=1472319 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Mechanical Engineers |
publisher.none.fl_str_mv |
American Society of Mechanical Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268647995736064 |
score |
13.13397 |