Modifier Adaptation as a Feedback Control Scheme
- Autores
- Marchetti, Alejandro Gabriel; de Avila Ferreira, T.; Costello, Sergio Gustavo; Bonvin, Dominique
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As a real-time optimization technique, modifier adaptation (MA) has gained much significance in recent years. This is mainly due to the fact that MA can deal explicitly with structural plant-model mismatch and unknown disturbances. MA is an iterative technique that is ideally suited to real-life applications. Its two main features are the way measurements are used to correct the model and the role played by the model in actually computing the next inputs. This paper analyzes these two features and shows that, although MA computes the next inputs via numerical optimization, it can be viewed as a feedback control scheme, that is, optimization implements tracking of the plant Karush-Kuhn-Tucker (KKT) conditions. As a result, the role of the model is downplayed to the point that model accuracy is not an important issue. The key issues are gradient estimation and model adequacy, the latter requiring that the model possesses the correct curvature of the cost function at the plant optimum. The main role of optimization is to identify the proper set of controlled variables (the active constraints and reduced gradients) as these might change with the operating point and disturbances. Thanks to this reduced requirement on model accuracy, MA is ideally suited to drive real-life processes to optimality. This is illustrated through two experimental systems with very different optimization features, namely, a commercial fuel-cell system and an experimental kite setup for harnessing wind energy.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: de Avila Ferreira, T.. Ecole Polytechnique Federale de Lausanne; Francia
Fil: Costello, Sergio Gustavo. Ecole Polytechnique Federale de Lausanne; Francia
Fil: Bonvin, Dominique. Ecole Polytechnique Federale de Lausanne; Francia - Materia
-
REAL-TIME OPTIMIZATION
PLANT-MODEL MISMATCH
CONSTRAINT ADAPTATION
MODIFIER ADAPTATION
MODEL ACCURACY
MODEL ADEQUACY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/141921
Ver los metadatos del registro completo
id |
CONICETDig_bd6ad67a492b7717275dcb31c915f467 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/141921 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modifier Adaptation as a Feedback Control SchemeMarchetti, Alejandro Gabrielde Avila Ferreira, T.Costello, Sergio GustavoBonvin, DominiqueREAL-TIME OPTIMIZATIONPLANT-MODEL MISMATCHCONSTRAINT ADAPTATIONMODIFIER ADAPTATIONMODEL ACCURACYMODEL ADEQUACYhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2As a real-time optimization technique, modifier adaptation (MA) has gained much significance in recent years. This is mainly due to the fact that MA can deal explicitly with structural plant-model mismatch and unknown disturbances. MA is an iterative technique that is ideally suited to real-life applications. Its two main features are the way measurements are used to correct the model and the role played by the model in actually computing the next inputs. This paper analyzes these two features and shows that, although MA computes the next inputs via numerical optimization, it can be viewed as a feedback control scheme, that is, optimization implements tracking of the plant Karush-Kuhn-Tucker (KKT) conditions. As a result, the role of the model is downplayed to the point that model accuracy is not an important issue. The key issues are gradient estimation and model adequacy, the latter requiring that the model possesses the correct curvature of the cost function at the plant optimum. The main role of optimization is to identify the proper set of controlled variables (the active constraints and reduced gradients) as these might change with the operating point and disturbances. Thanks to this reduced requirement on model accuracy, MA is ideally suited to drive real-life processes to optimality. This is illustrated through two experimental systems with very different optimization features, namely, a commercial fuel-cell system and an experimental kite setup for harnessing wind energy.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: de Avila Ferreira, T.. Ecole Polytechnique Federale de Lausanne; FranciaFil: Costello, Sergio Gustavo. Ecole Polytechnique Federale de Lausanne; FranciaFil: Bonvin, Dominique. Ecole Polytechnique Federale de Lausanne; FranciaAmerican Chemical Society2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141921Marchetti, Alejandro Gabriel; de Avila Ferreira, T.; Costello, Sergio Gustavo; Bonvin, Dominique; Modifier Adaptation as a Feedback Control Scheme; American Chemical Society; Industrial & Engineering Chemical Research; 59; 6; 2-2020; 2261-22740888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b04501info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.9b04501info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:47Zoai:ri.conicet.gov.ar:11336/141921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:47.275CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modifier Adaptation as a Feedback Control Scheme |
title |
Modifier Adaptation as a Feedback Control Scheme |
spellingShingle |
Modifier Adaptation as a Feedback Control Scheme Marchetti, Alejandro Gabriel REAL-TIME OPTIMIZATION PLANT-MODEL MISMATCH CONSTRAINT ADAPTATION MODIFIER ADAPTATION MODEL ACCURACY MODEL ADEQUACY |
title_short |
Modifier Adaptation as a Feedback Control Scheme |
title_full |
Modifier Adaptation as a Feedback Control Scheme |
title_fullStr |
Modifier Adaptation as a Feedback Control Scheme |
title_full_unstemmed |
Modifier Adaptation as a Feedback Control Scheme |
title_sort |
Modifier Adaptation as a Feedback Control Scheme |
dc.creator.none.fl_str_mv |
Marchetti, Alejandro Gabriel de Avila Ferreira, T. Costello, Sergio Gustavo Bonvin, Dominique |
author |
Marchetti, Alejandro Gabriel |
author_facet |
Marchetti, Alejandro Gabriel de Avila Ferreira, T. Costello, Sergio Gustavo Bonvin, Dominique |
author_role |
author |
author2 |
de Avila Ferreira, T. Costello, Sergio Gustavo Bonvin, Dominique |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
REAL-TIME OPTIMIZATION PLANT-MODEL MISMATCH CONSTRAINT ADAPTATION MODIFIER ADAPTATION MODEL ACCURACY MODEL ADEQUACY |
topic |
REAL-TIME OPTIMIZATION PLANT-MODEL MISMATCH CONSTRAINT ADAPTATION MODIFIER ADAPTATION MODEL ACCURACY MODEL ADEQUACY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
As a real-time optimization technique, modifier adaptation (MA) has gained much significance in recent years. This is mainly due to the fact that MA can deal explicitly with structural plant-model mismatch and unknown disturbances. MA is an iterative technique that is ideally suited to real-life applications. Its two main features are the way measurements are used to correct the model and the role played by the model in actually computing the next inputs. This paper analyzes these two features and shows that, although MA computes the next inputs via numerical optimization, it can be viewed as a feedback control scheme, that is, optimization implements tracking of the plant Karush-Kuhn-Tucker (KKT) conditions. As a result, the role of the model is downplayed to the point that model accuracy is not an important issue. The key issues are gradient estimation and model adequacy, the latter requiring that the model possesses the correct curvature of the cost function at the plant optimum. The main role of optimization is to identify the proper set of controlled variables (the active constraints and reduced gradients) as these might change with the operating point and disturbances. Thanks to this reduced requirement on model accuracy, MA is ideally suited to drive real-life processes to optimality. This is illustrated through two experimental systems with very different optimization features, namely, a commercial fuel-cell system and an experimental kite setup for harnessing wind energy. Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: de Avila Ferreira, T.. Ecole Polytechnique Federale de Lausanne; Francia Fil: Costello, Sergio Gustavo. Ecole Polytechnique Federale de Lausanne; Francia Fil: Bonvin, Dominique. Ecole Polytechnique Federale de Lausanne; Francia |
description |
As a real-time optimization technique, modifier adaptation (MA) has gained much significance in recent years. This is mainly due to the fact that MA can deal explicitly with structural plant-model mismatch and unknown disturbances. MA is an iterative technique that is ideally suited to real-life applications. Its two main features are the way measurements are used to correct the model and the role played by the model in actually computing the next inputs. This paper analyzes these two features and shows that, although MA computes the next inputs via numerical optimization, it can be viewed as a feedback control scheme, that is, optimization implements tracking of the plant Karush-Kuhn-Tucker (KKT) conditions. As a result, the role of the model is downplayed to the point that model accuracy is not an important issue. The key issues are gradient estimation and model adequacy, the latter requiring that the model possesses the correct curvature of the cost function at the plant optimum. The main role of optimization is to identify the proper set of controlled variables (the active constraints and reduced gradients) as these might change with the operating point and disturbances. Thanks to this reduced requirement on model accuracy, MA is ideally suited to drive real-life processes to optimality. This is illustrated through two experimental systems with very different optimization features, namely, a commercial fuel-cell system and an experimental kite setup for harnessing wind energy. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/141921 Marchetti, Alejandro Gabriel; de Avila Ferreira, T.; Costello, Sergio Gustavo; Bonvin, Dominique; Modifier Adaptation as a Feedback Control Scheme; American Chemical Society; Industrial & Engineering Chemical Research; 59; 6; 2-2020; 2261-2274 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/141921 |
identifier_str_mv |
Marchetti, Alejandro Gabriel; de Avila Ferreira, T.; Costello, Sergio Gustavo; Bonvin, Dominique; Modifier Adaptation as a Feedback Control Scheme; American Chemical Society; Industrial & Engineering Chemical Research; 59; 6; 2-2020; 2261-2274 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b04501 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.9b04501 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269423824535552 |
score |
13.13397 |