A new dual modifier-adaptation approach for iterative process optimization with inaccurate models

Autores
Marchetti, Alejandro Gabriel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in
order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Materia
ITERATIVE PROCESS OPTIMIZATION
MODIFIER ADAPTATION
REAL-TIME OPTIMIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3184

id CONICETDig_026573adcfe9eae19e414a360fb9e381
oai_identifier_str oai:ri.conicet.gov.ar:11336/3184
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new dual modifier-adaptation approach for iterative process optimization with inaccurate modelsMarchetti, Alejandro GabrielITERATIVE PROCESS OPTIMIZATIONMODIFIER ADAPTATIONREAL-TIME OPTIMIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in<br />order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaPergamon-Elsevier Science Ltd2013-12-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3184Marchetti, Alejandro Gabriel; A new dual modifier-adaptation approach for iterative process optimization with inaccurate models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 5-12-2013; 89-1000098-1354engSelected papers from ESCAPE-22 (European Symposium on Computer Aided Process Engineering - 22), 17-20 June 2012, London, UKinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413000847info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.03.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:44Zoai:ri.conicet.gov.ar:11336/3184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:44.904CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
title A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
spellingShingle A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
Marchetti, Alejandro Gabriel
ITERATIVE PROCESS OPTIMIZATION
MODIFIER ADAPTATION
REAL-TIME OPTIMIZATION
title_short A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
title_full A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
title_fullStr A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
title_full_unstemmed A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
title_sort A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
dc.creator.none.fl_str_mv Marchetti, Alejandro Gabriel
author Marchetti, Alejandro Gabriel
author_facet Marchetti, Alejandro Gabriel
author_role author
dc.subject.none.fl_str_mv ITERATIVE PROCESS OPTIMIZATION
MODIFIER ADAPTATION
REAL-TIME OPTIMIZATION
topic ITERATIVE PROCESS OPTIMIZATION
MODIFIER ADAPTATION
REAL-TIME OPTIMIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in<br />order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
description In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in<br />order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3184
Marchetti, Alejandro Gabriel; A new dual modifier-adaptation approach for iterative process optimization with inaccurate models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 5-12-2013; 89-100
0098-1354
url http://hdl.handle.net/11336/3184
identifier_str_mv Marchetti, Alejandro Gabriel; A new dual modifier-adaptation approach for iterative process optimization with inaccurate models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 5-12-2013; 89-100
0098-1354
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Selected papers from ESCAPE-22 (European Symposium on Computer Aided Process Engineering - 22), 17-20 June 2012, London, UK
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413000847
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.03.019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613153802944512
score 13.070432