A new dual modifier-adaptation approach for iterative process optimization with inaccurate models
- Autores
- Marchetti, Alejandro Gabriel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in
order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina - Materia
-
ITERATIVE PROCESS OPTIMIZATION
MODIFIER ADAPTATION
REAL-TIME OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3184
Ver los metadatos del registro completo
id |
CONICETDig_026573adcfe9eae19e414a360fb9e381 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3184 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate modelsMarchetti, Alejandro GabrielITERATIVE PROCESS OPTIMIZATIONMODIFIER ADAPTATIONREAL-TIME OPTIMIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in<br />order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaPergamon-Elsevier Science Ltd2013-12-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3184Marchetti, Alejandro Gabriel; A new dual modifier-adaptation approach for iterative process optimization with inaccurate models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 5-12-2013; 89-1000098-1354engSelected papers from ESCAPE-22 (European Symposium on Computer Aided Process Engineering - 22), 17-20 June 2012, London, UKinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413000847info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.03.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:44Zoai:ri.conicet.gov.ar:11336/3184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:44.904CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models |
title |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models |
spellingShingle |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models Marchetti, Alejandro Gabriel ITERATIVE PROCESS OPTIMIZATION MODIFIER ADAPTATION REAL-TIME OPTIMIZATION |
title_short |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models |
title_full |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models |
title_fullStr |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models |
title_full_unstemmed |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models |
title_sort |
A new dual modifier-adaptation approach for iterative process optimization with inaccurate models |
dc.creator.none.fl_str_mv |
Marchetti, Alejandro Gabriel |
author |
Marchetti, Alejandro Gabriel |
author_facet |
Marchetti, Alejandro Gabriel |
author_role |
author |
dc.subject.none.fl_str_mv |
ITERATIVE PROCESS OPTIMIZATION MODIFIER ADAPTATION REAL-TIME OPTIMIZATION |
topic |
ITERATIVE PROCESS OPTIMIZATION MODIFIER ADAPTATION REAL-TIME OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in<br />order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum. Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina |
description |
In order to deal with plant-model mismatch, iterative process optimization schemes use some adaptation strategy based on measurements. The modifier-adaptation approach consists in performing first-order corrections of the cost and constraint functions in the model-based optimization problem. The approach has the ability to converge to the true process optimum but the first-order corrections require the experimental estimation of the process gradients. Dual modifier-adaptation algorithms estimate the gradients by finite difference approximation based on the measurements obtained at the current and past operating points. In order to guarantee the accuracy of the estimated gradients a constraint is added to the optimization problem in<br />order to position the next operating points with respect to the previous ones. This paper presents an alternative first-order correction, which provides an improved approximation of the cost and constraint functions, together with a new gradient error constraint for use in dual modifier adaptation. By means of the Williams-Otto reactor case study, the new dual modifier-adaptation approach is compared in simulation with a previous approach found in the literature showing faster convergence to a neighborhood of the plant optimum. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3184 Marchetti, Alejandro Gabriel; A new dual modifier-adaptation approach for iterative process optimization with inaccurate models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 5-12-2013; 89-100 0098-1354 |
url |
http://hdl.handle.net/11336/3184 |
identifier_str_mv |
Marchetti, Alejandro Gabriel; A new dual modifier-adaptation approach for iterative process optimization with inaccurate models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 59; 5-12-2013; 89-100 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Selected papers from ESCAPE-22 (European Symposium on Computer Aided Process Engineering - 22), 17-20 June 2012, London, UK info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413000847 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.03.019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613153802944512 |
score |
13.070432 |