Steady-state target optimization designs for integrating real-time optimization and model predictive control

Autores
Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two
stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Real-Time Optimization
Steady-State Optimization
Target Optimization
Constraint Control
Model Predictive Control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22400

id CONICETDig_e859892bd7623bcc781401a5a58bbeaf
oai_identifier_str oai:ri.conicet.gov.ar:11336/22400
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Steady-state target optimization designs for integrating real-time optimization and model predictive controlMarchetti, Alejandro GabrielFerramosca, AntonioGonzález, Alejandro HernánReal-Time OptimizationSteady-State OptimizationTarget OptimizationConstraint ControlModel Predictive Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two<br />stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22400Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán; Steady-state target optimization designs for integrating real-time optimization and model predictive control; Elsevier; Journal Of Process Control; 24; 1; 12-2013; 129-1450959-1524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2013.11.004info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152413002291info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:44Zoai:ri.conicet.gov.ar:11336/22400instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:45.189CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Steady-state target optimization designs for integrating real-time optimization and model predictive control
title Steady-state target optimization designs for integrating real-time optimization and model predictive control
spellingShingle Steady-state target optimization designs for integrating real-time optimization and model predictive control
Marchetti, Alejandro Gabriel
Real-Time Optimization
Steady-State Optimization
Target Optimization
Constraint Control
Model Predictive Control
title_short Steady-state target optimization designs for integrating real-time optimization and model predictive control
title_full Steady-state target optimization designs for integrating real-time optimization and model predictive control
title_fullStr Steady-state target optimization designs for integrating real-time optimization and model predictive control
title_full_unstemmed Steady-state target optimization designs for integrating real-time optimization and model predictive control
title_sort Steady-state target optimization designs for integrating real-time optimization and model predictive control
dc.creator.none.fl_str_mv Marchetti, Alejandro Gabriel
Ferramosca, Antonio
González, Alejandro Hernán
author Marchetti, Alejandro Gabriel
author_facet Marchetti, Alejandro Gabriel
Ferramosca, Antonio
González, Alejandro Hernán
author_role author
author2 Ferramosca, Antonio
González, Alejandro Hernán
author2_role author
author
dc.subject.none.fl_str_mv Real-Time Optimization
Steady-State Optimization
Target Optimization
Constraint Control
Model Predictive Control
topic Real-Time Optimization
Steady-State Optimization
Target Optimization
Constraint Control
Model Predictive Control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two<br />stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two<br />stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22400
Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán; Steady-state target optimization designs for integrating real-time optimization and model predictive control; Elsevier; Journal Of Process Control; 24; 1; 12-2013; 129-145
0959-1524
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22400
identifier_str_mv Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán; Steady-state target optimization designs for integrating real-time optimization and model predictive control; Elsevier; Journal Of Process Control; 24; 1; 12-2013; 129-145
0959-1524
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2013.11.004
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152413002291
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269715513212928
score 13.13397