Steady-state target optimization designs for integrating real-time optimization and model predictive control
- Autores
- Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two
stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies.
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Real-Time Optimization
Steady-State Optimization
Target Optimization
Constraint Control
Model Predictive Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22400
Ver los metadatos del registro completo
id |
CONICETDig_e859892bd7623bcc781401a5a58bbeaf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22400 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Steady-state target optimization designs for integrating real-time optimization and model predictive controlMarchetti, Alejandro GabrielFerramosca, AntonioGonzález, Alejandro HernánReal-Time OptimizationSteady-State OptimizationTarget OptimizationConstraint ControlModel Predictive Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two<br />stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies.Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22400Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán; Steady-state target optimization designs for integrating real-time optimization and model predictive control; Elsevier; Journal Of Process Control; 24; 1; 12-2013; 129-1450959-1524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2013.11.004info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152413002291info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:44Zoai:ri.conicet.gov.ar:11336/22400instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:45.189CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Steady-state target optimization designs for integrating real-time optimization and model predictive control |
title |
Steady-state target optimization designs for integrating real-time optimization and model predictive control |
spellingShingle |
Steady-state target optimization designs for integrating real-time optimization and model predictive control Marchetti, Alejandro Gabriel Real-Time Optimization Steady-State Optimization Target Optimization Constraint Control Model Predictive Control |
title_short |
Steady-state target optimization designs for integrating real-time optimization and model predictive control |
title_full |
Steady-state target optimization designs for integrating real-time optimization and model predictive control |
title_fullStr |
Steady-state target optimization designs for integrating real-time optimization and model predictive control |
title_full_unstemmed |
Steady-state target optimization designs for integrating real-time optimization and model predictive control |
title_sort |
Steady-state target optimization designs for integrating real-time optimization and model predictive control |
dc.creator.none.fl_str_mv |
Marchetti, Alejandro Gabriel Ferramosca, Antonio González, Alejandro Hernán |
author |
Marchetti, Alejandro Gabriel |
author_facet |
Marchetti, Alejandro Gabriel Ferramosca, Antonio González, Alejandro Hernán |
author_role |
author |
author2 |
Ferramosca, Antonio González, Alejandro Hernán |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Real-Time Optimization Steady-State Optimization Target Optimization Constraint Control Model Predictive Control |
topic |
Real-Time Optimization Steady-State Optimization Target Optimization Constraint Control Model Predictive Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two<br />stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies. Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
In industrial practice, the optimal steady-state operation of continuous-time processes is typically addressed by a control hierarchy involving various layers. Therein, the Real-Time Optimization (RTO) layer computes the optimal operating point based on a nonlinear steady-state model of the plant. The optimal point is implemented by means of the Model Predictive Control (MPC) layer, which typically uses a linear dynamical model of the plant. The MPC layer usually includes two<br />stages: a Steady-State Target Optimization (SSTO) followed by the MPC dynamic regulator. In this work, we consider the integration of RTO with MPC in the presence of plant-model mismatch and constraints, by focusing on the design of the SSTO problem. Three different Quadratic Program (QP) designs are considered: (i) the standard design that finds steady-state targets that are as close as possible to the RTO setpoints; (ii) a novel optimizing control design that tracks the active constraints and the optimal inputs for the remaining degrees of freedom; and (iii) an improved QP approximation design were the SSTO problem approximates the RTO problem. The main advantage of the strategies (ii) and (iii) is in the improved optimality of the stationary operating points reached by the SSTO-MPC control system. The performance of the different SSTO designs is illustrated in simulation for several case studies. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22400 Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán; Steady-state target optimization designs for integrating real-time optimization and model predictive control; Elsevier; Journal Of Process Control; 24; 1; 12-2013; 129-145 0959-1524 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22400 |
identifier_str_mv |
Marchetti, Alejandro Gabriel; Ferramosca, Antonio; González, Alejandro Hernán; Steady-state target optimization designs for integrating real-time optimization and model predictive control; Elsevier; Journal Of Process Control; 24; 1; 12-2013; 129-145 0959-1524 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2013.11.004 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152413002291 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269715513212928 |
score |
13.13397 |