Selective and efficient quantum process tomography
- Autores
- Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society.
Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Pastawski, Fernando. Institut Max Planck Fuer Quantenoptik; Alemania
Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Quantum Process Tomography
Quantum Information Processing
Quantum Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61089
Ver los metadatos del registro completo
id |
CONICETDig_cea4197037ac0ebb855fced156c56385 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61089 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Selective and efficient quantum process tomographyBendersky, Ariel MartinPastawski, FernandoPaz, Juan PabloQuantum Process TomographyQuantum Information ProcessingQuantum Algorithmshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society.Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Pastawski, Fernando. Institut Max Planck Fuer Quantenoptik; AlemaniaFil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61089Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo; Selective and efficient quantum process tomography; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 80; 3; 9-2009; 32116-321161050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.032116info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.80.032116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:41Zoai:ri.conicet.gov.ar:11336/61089instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:41.417CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Selective and efficient quantum process tomography |
title |
Selective and efficient quantum process tomography |
spellingShingle |
Selective and efficient quantum process tomography Bendersky, Ariel Martin Quantum Process Tomography Quantum Information Processing Quantum Algorithms |
title_short |
Selective and efficient quantum process tomography |
title_full |
Selective and efficient quantum process tomography |
title_fullStr |
Selective and efficient quantum process tomography |
title_full_unstemmed |
Selective and efficient quantum process tomography |
title_sort |
Selective and efficient quantum process tomography |
dc.creator.none.fl_str_mv |
Bendersky, Ariel Martin Pastawski, Fernando Paz, Juan Pablo |
author |
Bendersky, Ariel Martin |
author_facet |
Bendersky, Ariel Martin Pastawski, Fernando Paz, Juan Pablo |
author_role |
author |
author2 |
Pastawski, Fernando Paz, Juan Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Quantum Process Tomography Quantum Information Processing Quantum Algorithms |
topic |
Quantum Process Tomography Quantum Information Processing Quantum Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society. Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Pastawski, Fernando. Institut Max Planck Fuer Quantenoptik; Alemania Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61089 Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo; Selective and efficient quantum process tomography; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 80; 3; 9-2009; 32116-32116 1050-2947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61089 |
identifier_str_mv |
Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo; Selective and efficient quantum process tomography; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 80; 3; 9-2009; 32116-32116 1050-2947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.032116 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.80.032116 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606010429702144 |
score |
13.000565 |