Selective and efficient quantum process tomography

Autores
Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society.
Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Pastawski, Fernando. Institut Max Planck Fuer Quantenoptik; Alemania
Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Quantum Process Tomography
Quantum Information Processing
Quantum Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61089

id CONICETDig_cea4197037ac0ebb855fced156c56385
oai_identifier_str oai:ri.conicet.gov.ar:11336/61089
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Selective and efficient quantum process tomographyBendersky, Ariel MartinPastawski, FernandoPaz, Juan PabloQuantum Process TomographyQuantum Information ProcessingQuantum Algorithmshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society.Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Pastawski, Fernando. Institut Max Planck Fuer Quantenoptik; AlemaniaFil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61089Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo; Selective and efficient quantum process tomography; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 80; 3; 9-2009; 32116-321161050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.032116info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.80.032116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:45:41Zoai:ri.conicet.gov.ar:11336/61089instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:45:41.417CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Selective and efficient quantum process tomography
title Selective and efficient quantum process tomography
spellingShingle Selective and efficient quantum process tomography
Bendersky, Ariel Martin
Quantum Process Tomography
Quantum Information Processing
Quantum Algorithms
title_short Selective and efficient quantum process tomography
title_full Selective and efficient quantum process tomography
title_fullStr Selective and efficient quantum process tomography
title_full_unstemmed Selective and efficient quantum process tomography
title_sort Selective and efficient quantum process tomography
dc.creator.none.fl_str_mv Bendersky, Ariel Martin
Pastawski, Fernando
Paz, Juan Pablo
author Bendersky, Ariel Martin
author_facet Bendersky, Ariel Martin
Pastawski, Fernando
Paz, Juan Pablo
author_role author
author2 Pastawski, Fernando
Paz, Juan Pablo
author2_role author
author
dc.subject.none.fl_str_mv Quantum Process Tomography
Quantum Information Processing
Quantum Algorithms
topic Quantum Process Tomography
Quantum Information Processing
Quantum Algorithms
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society.
Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Pastawski, Fernando. Institut Max Planck Fuer Quantenoptik; Alemania
Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description In this paper we describe in detail and generalize a method for quantum process tomography that was presented by Bendersky [Phys. Rev. Lett. 100, 190403 (2008)]. The method enables the efficient estimation of any element of the χ matrix of a quantum process. Such elements are estimated as averages over experimental outcomes with a precision that is fixed by the number of repetitions of the experiment. Resources required implementing it scale polynomially with the number of qubits of the system. The estimation of all diagonal elements of the χ matrix can be efficiently done without any ancillary qubits. In turn, the estimation of all the off-diagonal elements requires an extra clean qubit. The key ideas of the method, which is based on efficient estimation by random sampling over a set of states forming a 2-design, are described in detail. Efficient methods for preparing and detecting such states are explicitly shown. © 2009 The American Physical Society.
publishDate 2009
dc.date.none.fl_str_mv 2009-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61089
Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo; Selective and efficient quantum process tomography; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 80; 3; 9-2009; 32116-32116
1050-2947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61089
identifier_str_mv Bendersky, Ariel Martin; Pastawski, Fernando; Paz, Juan Pablo; Selective and efficient quantum process tomography; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 80; 3; 9-2009; 32116-32116
1050-2947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.032116
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.80.032116
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606010429702144
score 13.000565