General theory of measurement with two copies of a quantum state
- Autores
- Bendersky, Ariel Martin; Paz, Juan Pablo; Cunha, Marcelo Terra
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the results of the most general measurement on two copies of a quantum state. We show that by using two copies of a quantum state it is possible to achieve an exponential improvement with respect to known methods for quantum state tomography. We demonstrate that μ can label a set of outcomes of a measurement on two copies if and only if there is a family of maps Cμ such that the probability Prob(μ) is the fidelity of each map, i.e., Prob(μ)=Tr[ρCμ(ρ)]. Here, the map Cμ must be completely positive after being composed with the transposition (these are called completely copositive, or CCP, maps) and must add up to the fully depolarizing map. This implies that a positive operator valued measure on two copies induces a measure on the set of CCP maps (i.e., a CCP map valued measure). © 2009 The American Physical Society.
Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cunha, Marcelo Terra. Departamento de Matemática; Brasil - Materia
-
Quantum Information
Quantum Foundations
Quantum Algorithms
Quantum Measurement - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61403
Ver los metadatos del registro completo
id |
CONICETDig_75e32ca4f3d87d6cfd7793cbbbd8384a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61403 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
General theory of measurement with two copies of a quantum stateBendersky, Ariel MartinPaz, Juan PabloCunha, Marcelo TerraQuantum InformationQuantum FoundationsQuantum AlgorithmsQuantum Measurementhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We analyze the results of the most general measurement on two copies of a quantum state. We show that by using two copies of a quantum state it is possible to achieve an exponential improvement with respect to known methods for quantum state tomography. We demonstrate that μ can label a set of outcomes of a measurement on two copies if and only if there is a family of maps Cμ such that the probability Prob(μ) is the fidelity of each map, i.e., Prob(μ)=Tr[ρCμ(ρ)]. Here, the map Cμ must be completely positive after being composed with the transposition (these are called completely copositive, or CCP, maps) and must add up to the fully depolarizing map. This implies that a positive operator valued measure on two copies induces a measure on the set of CCP maps (i.e., a CCP map valued measure). © 2009 The American Physical Society.Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cunha, Marcelo Terra. Departamento de Matemática; BrasilAmerican Physical Society2009-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61403Bendersky, Ariel Martin; Paz, Juan Pablo; Cunha, Marcelo Terra; General theory of measurement with two copies of a quantum state; American Physical Society; Physical Review Letters; 103; 4; 7-2009; 40404-404040031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.040404info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.103.040404info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:01Zoai:ri.conicet.gov.ar:11336/61403instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:01.585CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
General theory of measurement with two copies of a quantum state |
title |
General theory of measurement with two copies of a quantum state |
spellingShingle |
General theory of measurement with two copies of a quantum state Bendersky, Ariel Martin Quantum Information Quantum Foundations Quantum Algorithms Quantum Measurement |
title_short |
General theory of measurement with two copies of a quantum state |
title_full |
General theory of measurement with two copies of a quantum state |
title_fullStr |
General theory of measurement with two copies of a quantum state |
title_full_unstemmed |
General theory of measurement with two copies of a quantum state |
title_sort |
General theory of measurement with two copies of a quantum state |
dc.creator.none.fl_str_mv |
Bendersky, Ariel Martin Paz, Juan Pablo Cunha, Marcelo Terra |
author |
Bendersky, Ariel Martin |
author_facet |
Bendersky, Ariel Martin Paz, Juan Pablo Cunha, Marcelo Terra |
author_role |
author |
author2 |
Paz, Juan Pablo Cunha, Marcelo Terra |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Quantum Information Quantum Foundations Quantum Algorithms Quantum Measurement |
topic |
Quantum Information Quantum Foundations Quantum Algorithms Quantum Measurement |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze the results of the most general measurement on two copies of a quantum state. We show that by using two copies of a quantum state it is possible to achieve an exponential improvement with respect to known methods for quantum state tomography. We demonstrate that μ can label a set of outcomes of a measurement on two copies if and only if there is a family of maps Cμ such that the probability Prob(μ) is the fidelity of each map, i.e., Prob(μ)=Tr[ρCμ(ρ)]. Here, the map Cμ must be completely positive after being composed with the transposition (these are called completely copositive, or CCP, maps) and must add up to the fully depolarizing map. This implies that a positive operator valued measure on two copies induces a measure on the set of CCP maps (i.e., a CCP map valued measure). © 2009 The American Physical Society. Fil: Bendersky, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Paz, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Cunha, Marcelo Terra. Departamento de Matemática; Brasil |
description |
We analyze the results of the most general measurement on two copies of a quantum state. We show that by using two copies of a quantum state it is possible to achieve an exponential improvement with respect to known methods for quantum state tomography. We demonstrate that μ can label a set of outcomes of a measurement on two copies if and only if there is a family of maps Cμ such that the probability Prob(μ) is the fidelity of each map, i.e., Prob(μ)=Tr[ρCμ(ρ)]. Here, the map Cμ must be completely positive after being composed with the transposition (these are called completely copositive, or CCP, maps) and must add up to the fully depolarizing map. This implies that a positive operator valued measure on two copies induces a measure on the set of CCP maps (i.e., a CCP map valued measure). © 2009 The American Physical Society. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61403 Bendersky, Ariel Martin; Paz, Juan Pablo; Cunha, Marcelo Terra; General theory of measurement with two copies of a quantum state; American Physical Society; Physical Review Letters; 103; 4; 7-2009; 40404-40404 0031-9007 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61403 |
identifier_str_mv |
Bendersky, Ariel Martin; Paz, Juan Pablo; Cunha, Marcelo Terra; General theory of measurement with two copies of a quantum state; American Physical Society; Physical Review Letters; 103; 4; 7-2009; 40404-40404 0031-9007 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.040404 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.103.040404 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268897444626432 |
score |
13.13397 |