Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
- Autores
- Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension.
Fil: Pears Stefano, Quimey Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Varga, J. J. M.. Centro de Física de Materiales; España. Donostia International Physic Center; España
Fil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Iemmi, Claudio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
QUANTUM CHANNELS
QUANTUM STATES OF LIGHT
QUANTUM TOMOGRAPHY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162411
Ver los metadatos del registro completo
id |
CONICETDig_938a7c8435dad6091f03745763542168 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162411 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensionsPears Stefano, Quimey MartínPerito, IgnacioVarga, J. J. M.Rebón, LorenaIemmi, Claudio CésarQUANTUM CHANNELSQUANTUM STATES OF LIGHTQUANTUM TOMOGRAPHYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension.Fil: Pears Stefano, Quimey Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Varga, J. J. M.. Centro de Física de Materiales; España. Donostia International Physic Center; EspañaFil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Iemmi, Claudio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAmerican Physical Society2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162411Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César; Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 5; 5-2021; 1-82469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.052438info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.103.052438info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:30:41Zoai:ri.conicet.gov.ar:11336/162411instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:30:41.337CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions |
title |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions |
spellingShingle |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions Pears Stefano, Quimey Martín QUANTUM CHANNELS QUANTUM STATES OF LIGHT QUANTUM TOMOGRAPHY |
title_short |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions |
title_full |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions |
title_fullStr |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions |
title_full_unstemmed |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions |
title_sort |
Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions |
dc.creator.none.fl_str_mv |
Pears Stefano, Quimey Martín Perito, Ignacio Varga, J. J. M. Rebón, Lorena Iemmi, Claudio César |
author |
Pears Stefano, Quimey Martín |
author_facet |
Pears Stefano, Quimey Martín Perito, Ignacio Varga, J. J. M. Rebón, Lorena Iemmi, Claudio César |
author_role |
author |
author2 |
Perito, Ignacio Varga, J. J. M. Rebón, Lorena Iemmi, Claudio César |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
QUANTUM CHANNELS QUANTUM STATES OF LIGHT QUANTUM TOMOGRAPHY |
topic |
QUANTUM CHANNELS QUANTUM STATES OF LIGHT QUANTUM TOMOGRAPHY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension. Fil: Pears Stefano, Quimey Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Varga, J. J. M.. Centro de Física de Materiales; España. Donostia International Physic Center; España Fil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Iemmi, Claudio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162411 Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César; Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 5; 5-2021; 1-8 2469-9926 2469-9934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/162411 |
identifier_str_mv |
Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César; Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 5; 5-2021; 1-8 2469-9926 2469-9934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.052438 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.103.052438 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083444433485824 |
score |
13.22299 |