Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions

Autores
Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension.
Fil: Pears Stefano, Quimey Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Varga, J. J. M.. Centro de Física de Materiales; España. Donostia International Physic Center; España
Fil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Iemmi, Claudio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
QUANTUM CHANNELS
QUANTUM STATES OF LIGHT
QUANTUM TOMOGRAPHY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/162411

id CONICETDig_938a7c8435dad6091f03745763542168
oai_identifier_str oai:ri.conicet.gov.ar:11336/162411
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensionsPears Stefano, Quimey MartínPerito, IgnacioVarga, J. J. M.Rebón, LorenaIemmi, Claudio CésarQUANTUM CHANNELSQUANTUM STATES OF LIGHTQUANTUM TOMOGRAPHYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension.Fil: Pears Stefano, Quimey Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Varga, J. J. M.. Centro de Física de Materiales; España. Donostia International Physic Center; EspañaFil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Iemmi, Claudio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAmerican Physical Society2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162411Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César; Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 5; 5-2021; 1-82469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.052438info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.103.052438info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:30:41Zoai:ri.conicet.gov.ar:11336/162411instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:30:41.337CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
title Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
spellingShingle Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
Pears Stefano, Quimey Martín
QUANTUM CHANNELS
QUANTUM STATES OF LIGHT
QUANTUM TOMOGRAPHY
title_short Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
title_full Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
title_fullStr Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
title_full_unstemmed Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
title_sort Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions
dc.creator.none.fl_str_mv Pears Stefano, Quimey Martín
Perito, Ignacio
Varga, J. J. M.
Rebón, Lorena
Iemmi, Claudio César
author Pears Stefano, Quimey Martín
author_facet Pears Stefano, Quimey Martín
Perito, Ignacio
Varga, J. J. M.
Rebón, Lorena
Iemmi, Claudio César
author_role author
author2 Perito, Ignacio
Varga, J. J. M.
Rebón, Lorena
Iemmi, Claudio César
author2_role author
author
author
author
dc.subject.none.fl_str_mv QUANTUM CHANNELS
QUANTUM STATES OF LIGHT
QUANTUM TOMOGRAPHY
topic QUANTUM CHANNELS
QUANTUM STATES OF LIGHT
QUANTUM TOMOGRAPHY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension.
Fil: Pears Stefano, Quimey Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Varga, J. J. M.. Centro de Física de Materiales; España. Donostia International Physic Center; España
Fil: Rebón, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Iemmi, Claudio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description The temporal evolution of a quantum system can be characterized by quantum process tomography, a complex task that consumes a number of physical resources scaling exponentially with the number of subsystems. An alternative approach to the full reconstruction of a quantum channel is the selective and efficient quantum process tomography, a method that allows estimating, individually and up to the required accuracy, each element of the matrix that describes the process, using only a polynomial amount of resources. The implementation of this protocol is closely related to the possibility of building a complete set of mutually unbiased bases (MUBs), whose existence is known only when the dimension of the Hilbert space is the power of a prime number. However, an extension of the method that uses tensor products of maximal sets of MUBs has been recently introduced. Here we explicitly describe how to implement the algorithm for a selective and efficient estimation of a quantum process in a nonprime power dimension and conduct, an experimental verification of the method in a Hilbert space of dimension d = 6. This is the smallest space for which a complete set of MUBs is not known to exist, but it can be decomposed as a tensor product of two Hilbert spaces of dimensions D1 = 2 and D2 = 3, in which a complete set of MUBs is already known. The six-dimensional states were codified in the discretized transverse linear momentum of photons. The state preparation and detection stages are dynamically programed with the use of only-phase spatial light modulators, in a versatile experimental setup that allows one to implement the algorithm in any finite dimension.
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/162411
Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César; Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 5; 5-2021; 1-8
2469-9926
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/162411
identifier_str_mv Pears Stefano, Quimey Martín; Perito, Ignacio; Varga, J. J. M.; Rebón, Lorena; Iemmi, Claudio César; Experimental characterization of quantum processes: a selective and efficient method in arbitrary finite dimensions; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 103; 5; 5-2021; 1-8
2469-9926
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.052438
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.103.052438
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083444433485824
score 13.22299