Selective and efficient quantum process tomography in arbitrary finite dimension

Autores
Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.
Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Materia
Quantum process tomography
Mutually unbiased bases
Quantum information
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96787

id CONICETDig_8d3f86f1a9cac872a14448e2c043f92e
oai_identifier_str oai:ri.conicet.gov.ar:11336/96787
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Selective and efficient quantum process tomography in arbitrary finite dimensionPerito, IgnacioRoncaglia, Augusto JoseBendersky, Ariel MartinQuantum process tomographyMutually unbiased basesQuantum informationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaAmerican Physical Society2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96787Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-82469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.98.062303info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062303info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.01258info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:20:14Zoai:ri.conicet.gov.ar:11336/96787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:20:14.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Selective and efficient quantum process tomography in arbitrary finite dimension
title Selective and efficient quantum process tomography in arbitrary finite dimension
spellingShingle Selective and efficient quantum process tomography in arbitrary finite dimension
Perito, Ignacio
Quantum process tomography
Mutually unbiased bases
Quantum information
title_short Selective and efficient quantum process tomography in arbitrary finite dimension
title_full Selective and efficient quantum process tomography in arbitrary finite dimension
title_fullStr Selective and efficient quantum process tomography in arbitrary finite dimension
title_full_unstemmed Selective and efficient quantum process tomography in arbitrary finite dimension
title_sort Selective and efficient quantum process tomography in arbitrary finite dimension
dc.creator.none.fl_str_mv Perito, Ignacio
Roncaglia, Augusto Jose
Bendersky, Ariel Martin
author Perito, Ignacio
author_facet Perito, Ignacio
Roncaglia, Augusto Jose
Bendersky, Ariel Martin
author_role author
author2 Roncaglia, Augusto Jose
Bendersky, Ariel Martin
author2_role author
author
dc.subject.none.fl_str_mv Quantum process tomography
Mutually unbiased bases
Quantum information
topic Quantum process tomography
Mutually unbiased bases
Quantum information
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.
Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
description The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96787
Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8
2469-9926
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96787
identifier_str_mv Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8
2469-9926
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.98.062303
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062303
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.01258
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782647798333440
score 12.982451