Selective and efficient quantum process tomography in arbitrary finite dimension
- Autores
- Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.
Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina - Materia
-
Quantum process tomography
Mutually unbiased bases
Quantum information - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96787
Ver los metadatos del registro completo
| id |
CONICETDig_8d3f86f1a9cac872a14448e2c043f92e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96787 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Selective and efficient quantum process tomography in arbitrary finite dimensionPerito, IgnacioRoncaglia, Augusto JoseBendersky, Ariel MartinQuantum process tomographyMutually unbiased basesQuantum informationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension.Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaAmerican Physical Society2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96787Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-82469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.98.062303info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062303info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.01258info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:20:14Zoai:ri.conicet.gov.ar:11336/96787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:20:14.386CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Selective and efficient quantum process tomography in arbitrary finite dimension |
| title |
Selective and efficient quantum process tomography in arbitrary finite dimension |
| spellingShingle |
Selective and efficient quantum process tomography in arbitrary finite dimension Perito, Ignacio Quantum process tomography Mutually unbiased bases Quantum information |
| title_short |
Selective and efficient quantum process tomography in arbitrary finite dimension |
| title_full |
Selective and efficient quantum process tomography in arbitrary finite dimension |
| title_fullStr |
Selective and efficient quantum process tomography in arbitrary finite dimension |
| title_full_unstemmed |
Selective and efficient quantum process tomography in arbitrary finite dimension |
| title_sort |
Selective and efficient quantum process tomography in arbitrary finite dimension |
| dc.creator.none.fl_str_mv |
Perito, Ignacio Roncaglia, Augusto Jose Bendersky, Ariel Martin |
| author |
Perito, Ignacio |
| author_facet |
Perito, Ignacio Roncaglia, Augusto Jose Bendersky, Ariel Martin |
| author_role |
author |
| author2 |
Roncaglia, Augusto Jose Bendersky, Ariel Martin |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Quantum process tomography Mutually unbiased bases Quantum information |
| topic |
Quantum process tomography Mutually unbiased bases Quantum information |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension. Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina |
| description |
The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96787 Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8 2469-9926 2469-9934 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/96787 |
| identifier_str_mv |
Perito, Ignacio; Roncaglia, Augusto Jose; Bendersky, Ariel Martin; Selective and efficient quantum process tomography in arbitrary finite dimension; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8 2469-9926 2469-9934 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.98.062303 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062303 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1808.01258 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782647798333440 |
| score |
12.982451 |