Community assessment of methods to deconvolve cellular composition from bulk gene expression

Autores
White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; Petitprez, Florent; Lin, Yating; Yu, Rongshan; Guerrero Gimenez, Martin Eduardo; Domanskyi, Sergii; Monaco, Gianni; Chung, Verena; Banerjee, Jineta; Derrick, Daniel; Valdeolivas, Alberto; Li, Haojun; Xiao, Xu; Wang, Shun; Zheng, Frank; Yang, Wenxian; Catania, Carlos Adrian; Lang, Benjamin J.; Bertus, Thomas J.; Piermarocchi, Carlo; Caruso, Francesca P.; Scholz, Alexander; Saez Rodriguez, Julio; Heiser, Laura M.; Guinney, Justin; Gentles, Andrew J.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.
Fil: White, Brian S.. The Jackson Laboratory for Genomic Medicine; Estados Unidos
Fil: de Reyniès, Aurélien. Inserm; Francia. Universite de Paris; Francia
Fil: Newman, Aaron M.. University of Stanford; Estados Unidos
Fil: Waterfall, Joshua J.. Inserm; Francia. PSL Research University; Francia
Fil: Lamb, Andrew. Sage Bionetworks; Estados Unidos
Fil: Petitprez, Florent. University of Edinburgh; Reino Unido. Ligue Nationale Contre le Cancer; Francia
Fil: Lin, Yating. Xiamen University; China
Fil: Yu, Rongshan. Xiamen University; China
Fil: Guerrero Gimenez, Martin Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina
Fil: Domanskyi, Sergii. Michigan State University; Estados Unidos
Fil: Monaco, Gianni. BIOGEM Institute of Molecular Biology and Genetics; Italia
Fil: Chung, Verena. Sage Bionetworks; Estados Unidos
Fil: Banerjee, Jineta. Sage Bionetworks; Estados Unidos
Fil: Derrick, Daniel. Oregon Health & Science University; Estados Unidos
Fil: Valdeolivas, Alberto. Ruprecht Karls Universitat Heidelberg; Alemania
Fil: Li, Haojun. Xiamen University; China
Fil: Xiao, Xu. Xiamen University; China
Fil: Wang, Shun. Chinese Academy of Sciences; República de China
Fil: Zheng, Frank. AmoyDx; China
Fil: Yang, Wenxian. Aginome Scientific; China
Fil: Catania, Carlos Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina
Fil: Lang, Benjamin J.. Harvard Medical School; Estados Unidos
Fil: Bertus, Thomas J.. Michigan State University; Estados Unidos
Fil: Piermarocchi, Carlo. Michigan State University; Estados Unidos
Fil: Caruso, Francesca P.. BIOGEM Institute of Molecular Biology and Genetic; Italia
Fil: Scholz, Alexander. No especifíca;
Fil: Saez Rodriguez, Julio. Heidelberg University; Alemania
Fil: Heiser, Laura M.. Oregon Health & Science University; Estados Unidos
Fil: Guinney, Justin. Sage Bionetworks; Estados Unidos
Fil: Gentles, Andrew J.. University of Stanford; Estados Unidos
Materia
Support Vector Regression
Random Forests
Tumor Deconvolution
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/261172

id CONICETDig_ce6a451d6e2d85dab19180e18f740aa2
oai_identifier_str oai:ri.conicet.gov.ar:11336/261172
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Community assessment of methods to deconvolve cellular composition from bulk gene expressionWhite, Brian S.de Reyniès, AurélienNewman, Aaron M.Waterfall, Joshua J.Lamb, AndrewPetitprez, FlorentLin, YatingYu, RongshanGuerrero Gimenez, Martin EduardoDomanskyi, SergiiMonaco, GianniChung, VerenaBanerjee, JinetaDerrick, DanielValdeolivas, AlbertoLi, HaojunXiao, XuWang, ShunZheng, FrankYang, WenxianCatania, Carlos AdrianLang, Benjamin J.Bertus, Thomas J.Piermarocchi, CarloCaruso, Francesca P.Scholz, AlexanderSaez Rodriguez, JulioHeiser, Laura M.Guinney, JustinGentles, Andrew J.Support Vector RegressionRandom ForestsTumor Deconvolutionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.Fil: White, Brian S.. The Jackson Laboratory for Genomic Medicine; Estados UnidosFil: de Reyniès, Aurélien. Inserm; Francia. Universite de Paris; FranciaFil: Newman, Aaron M.. University of Stanford; Estados UnidosFil: Waterfall, Joshua J.. Inserm; Francia. PSL Research University; FranciaFil: Lamb, Andrew. Sage Bionetworks; Estados UnidosFil: Petitprez, Florent. University of Edinburgh; Reino Unido. Ligue Nationale Contre le Cancer; FranciaFil: Lin, Yating. Xiamen University; ChinaFil: Yu, Rongshan. Xiamen University; ChinaFil: Guerrero Gimenez, Martin Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Domanskyi, Sergii. Michigan State University; Estados UnidosFil: Monaco, Gianni. BIOGEM Institute of Molecular Biology and Genetics; ItaliaFil: Chung, Verena. Sage Bionetworks; Estados UnidosFil: Banerjee, Jineta. Sage Bionetworks; Estados UnidosFil: Derrick, Daniel. Oregon Health & Science University; Estados UnidosFil: Valdeolivas, Alberto. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Li, Haojun. Xiamen University; ChinaFil: Xiao, Xu. Xiamen University; ChinaFil: Wang, Shun. Chinese Academy of Sciences; República de ChinaFil: Zheng, Frank. AmoyDx; ChinaFil: Yang, Wenxian. Aginome Scientific; ChinaFil: Catania, Carlos Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Lang, Benjamin J.. Harvard Medical School; Estados UnidosFil: Bertus, Thomas J.. Michigan State University; Estados UnidosFil: Piermarocchi, Carlo. Michigan State University; Estados UnidosFil: Caruso, Francesca P.. BIOGEM Institute of Molecular Biology and Genetic; ItaliaFil: Scholz, Alexander. No especifíca;Fil: Saez Rodriguez, Julio. Heidelberg University; AlemaniaFil: Heiser, Laura M.. Oregon Health & Science University; Estados UnidosFil: Guinney, Justin. Sage Bionetworks; Estados UnidosFil: Gentles, Andrew J.. University of Stanford; Estados UnidosSpringer Nature2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/261172White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; et al.; Community assessment of methods to deconvolve cellular composition from bulk gene expression; Springer Nature; Nature Communications; 15; 1; 8-2024; 1-222041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-50618-0info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-50618-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:11Zoai:ri.conicet.gov.ar:11336/261172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:12.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Community assessment of methods to deconvolve cellular composition from bulk gene expression
title Community assessment of methods to deconvolve cellular composition from bulk gene expression
spellingShingle Community assessment of methods to deconvolve cellular composition from bulk gene expression
White, Brian S.
Support Vector Regression
Random Forests
Tumor Deconvolution
title_short Community assessment of methods to deconvolve cellular composition from bulk gene expression
title_full Community assessment of methods to deconvolve cellular composition from bulk gene expression
title_fullStr Community assessment of methods to deconvolve cellular composition from bulk gene expression
title_full_unstemmed Community assessment of methods to deconvolve cellular composition from bulk gene expression
title_sort Community assessment of methods to deconvolve cellular composition from bulk gene expression
dc.creator.none.fl_str_mv White, Brian S.
de Reyniès, Aurélien
Newman, Aaron M.
Waterfall, Joshua J.
Lamb, Andrew
Petitprez, Florent
Lin, Yating
Yu, Rongshan
Guerrero Gimenez, Martin Eduardo
Domanskyi, Sergii
Monaco, Gianni
Chung, Verena
Banerjee, Jineta
Derrick, Daniel
Valdeolivas, Alberto
Li, Haojun
Xiao, Xu
Wang, Shun
Zheng, Frank
Yang, Wenxian
Catania, Carlos Adrian
Lang, Benjamin J.
Bertus, Thomas J.
Piermarocchi, Carlo
Caruso, Francesca P.
Scholz, Alexander
Saez Rodriguez, Julio
Heiser, Laura M.
Guinney, Justin
Gentles, Andrew J.
author White, Brian S.
author_facet White, Brian S.
de Reyniès, Aurélien
Newman, Aaron M.
Waterfall, Joshua J.
Lamb, Andrew
Petitprez, Florent
Lin, Yating
Yu, Rongshan
Guerrero Gimenez, Martin Eduardo
Domanskyi, Sergii
Monaco, Gianni
Chung, Verena
Banerjee, Jineta
Derrick, Daniel
Valdeolivas, Alberto
Li, Haojun
Xiao, Xu
Wang, Shun
Zheng, Frank
Yang, Wenxian
Catania, Carlos Adrian
Lang, Benjamin J.
Bertus, Thomas J.
Piermarocchi, Carlo
Caruso, Francesca P.
Scholz, Alexander
Saez Rodriguez, Julio
Heiser, Laura M.
Guinney, Justin
Gentles, Andrew J.
author_role author
author2 de Reyniès, Aurélien
Newman, Aaron M.
Waterfall, Joshua J.
Lamb, Andrew
Petitprez, Florent
Lin, Yating
Yu, Rongshan
Guerrero Gimenez, Martin Eduardo
Domanskyi, Sergii
Monaco, Gianni
Chung, Verena
Banerjee, Jineta
Derrick, Daniel
Valdeolivas, Alberto
Li, Haojun
Xiao, Xu
Wang, Shun
Zheng, Frank
Yang, Wenxian
Catania, Carlos Adrian
Lang, Benjamin J.
Bertus, Thomas J.
Piermarocchi, Carlo
Caruso, Francesca P.
Scholz, Alexander
Saez Rodriguez, Julio
Heiser, Laura M.
Guinney, Justin
Gentles, Andrew J.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Support Vector Regression
Random Forests
Tumor Deconvolution
topic Support Vector Regression
Random Forests
Tumor Deconvolution
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.
Fil: White, Brian S.. The Jackson Laboratory for Genomic Medicine; Estados Unidos
Fil: de Reyniès, Aurélien. Inserm; Francia. Universite de Paris; Francia
Fil: Newman, Aaron M.. University of Stanford; Estados Unidos
Fil: Waterfall, Joshua J.. Inserm; Francia. PSL Research University; Francia
Fil: Lamb, Andrew. Sage Bionetworks; Estados Unidos
Fil: Petitprez, Florent. University of Edinburgh; Reino Unido. Ligue Nationale Contre le Cancer; Francia
Fil: Lin, Yating. Xiamen University; China
Fil: Yu, Rongshan. Xiamen University; China
Fil: Guerrero Gimenez, Martin Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina
Fil: Domanskyi, Sergii. Michigan State University; Estados Unidos
Fil: Monaco, Gianni. BIOGEM Institute of Molecular Biology and Genetics; Italia
Fil: Chung, Verena. Sage Bionetworks; Estados Unidos
Fil: Banerjee, Jineta. Sage Bionetworks; Estados Unidos
Fil: Derrick, Daniel. Oregon Health & Science University; Estados Unidos
Fil: Valdeolivas, Alberto. Ruprecht Karls Universitat Heidelberg; Alemania
Fil: Li, Haojun. Xiamen University; China
Fil: Xiao, Xu. Xiamen University; China
Fil: Wang, Shun. Chinese Academy of Sciences; República de China
Fil: Zheng, Frank. AmoyDx; China
Fil: Yang, Wenxian. Aginome Scientific; China
Fil: Catania, Carlos Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina
Fil: Lang, Benjamin J.. Harvard Medical School; Estados Unidos
Fil: Bertus, Thomas J.. Michigan State University; Estados Unidos
Fil: Piermarocchi, Carlo. Michigan State University; Estados Unidos
Fil: Caruso, Francesca P.. BIOGEM Institute of Molecular Biology and Genetic; Italia
Fil: Scholz, Alexander. No especifíca;
Fil: Saez Rodriguez, Julio. Heidelberg University; Alemania
Fil: Heiser, Laura M.. Oregon Health & Science University; Estados Unidos
Fil: Guinney, Justin. Sage Bionetworks; Estados Unidos
Fil: Gentles, Andrew J.. University of Stanford; Estados Unidos
description We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.
publishDate 2024
dc.date.none.fl_str_mv 2024-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/261172
White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; et al.; Community assessment of methods to deconvolve cellular composition from bulk gene expression; Springer Nature; Nature Communications; 15; 1; 8-2024; 1-22
2041-1723
CONICET Digital
CONICET
url http://hdl.handle.net/11336/261172
identifier_str_mv White, Brian S.; de Reyniès, Aurélien; Newman, Aaron M.; Waterfall, Joshua J.; Lamb, Andrew; et al.; Community assessment of methods to deconvolve cellular composition from bulk gene expression; Springer Nature; Nature Communications; 15; 1; 8-2024; 1-22
2041-1723
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-50618-0
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-024-50618-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613420413878272
score 13.070432