Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina
- Autores
- Teverovsky Korsic, Sofia Andrea; Notarnicola. Claudia; Uriburu Quirno, Marcelo; Cara Ramirez, Leandro Javier
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the semi-arid Central Andes of Argentina, the water from snowmelt runoff plays a fundamental role as a provider of ecosystem services. Nowadays, the global climate change has an observable negative impact on this area, due, principally, to the decrease in both liquid and solid rainfall, with the consequent decrease in water availability. In this context, runoff prediction acquires vital importance for the integrated water resources management. The aim of this study is to investigate the performance of the Support Vector Regression (SVR) technique in predicting monthly discharges with 1-month lead-time in the Tupungato River basin in the Central Andes of Argentina. This methodology has never been applied before in this mountainous region. Different inputs, like meteorological data and satellite-based snow cover area estimates from MODIS, were analyzed in order to identify the suitable inputs predictors to forecast monthly streamflow. The results were compared against the results derived from a Classification and Regression Tree (CART) model and, also, against an Auto-regressive Integrated Moving-average (ARIMA) model. Different metrics were used to evaluate the performance of the SVR tests in reproducing streamflow observations at the basin outlet. The coefficient of determination for each of the analyzed tests lays between 0.75 and 0.89 in the validation set. The comparison with the other models showed a significant improvement in performance of SVR in respect of CART and ARIMA model. SVR models proved a promising approach to support water management and decision making for productive activities, potentially also in other basins in the region.
Fil: Teverovsky Korsic, Sofia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales; Argentina. Universidad Nacional de Luján; Argentina
Fil: Notarnicola. Claudia. European Academy of Bozen; Italia
Fil: Uriburu Quirno, Marcelo. Comision Nacional de Actividades Espaciales; Argentina
Fil: Cara Ramirez, Leandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina - Materia
-
Support Vector Regression
Runoff Prediction
Remote Sensing
Machine learning techniques - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/233024
Ver los metadatos del registro completo
id |
CONICETDig_026b11c4196971d6c4e97456a6c7514a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/233024 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of ArgentinaTeverovsky Korsic, Sofia AndreaNotarnicola. ClaudiaUriburu Quirno, MarceloCara Ramirez, Leandro JavierSupport Vector RegressionRunoff PredictionRemote SensingMachine learning techniqueshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In the semi-arid Central Andes of Argentina, the water from snowmelt runoff plays a fundamental role as a provider of ecosystem services. Nowadays, the global climate change has an observable negative impact on this area, due, principally, to the decrease in both liquid and solid rainfall, with the consequent decrease in water availability. In this context, runoff prediction acquires vital importance for the integrated water resources management. The aim of this study is to investigate the performance of the Support Vector Regression (SVR) technique in predicting monthly discharges with 1-month lead-time in the Tupungato River basin in the Central Andes of Argentina. This methodology has never been applied before in this mountainous region. Different inputs, like meteorological data and satellite-based snow cover area estimates from MODIS, were analyzed in order to identify the suitable inputs predictors to forecast monthly streamflow. The results were compared against the results derived from a Classification and Regression Tree (CART) model and, also, against an Auto-regressive Integrated Moving-average (ARIMA) model. Different metrics were used to evaluate the performance of the SVR tests in reproducing streamflow observations at the basin outlet. The coefficient of determination for each of the analyzed tests lays between 0.75 and 0.89 in the validation set. The comparison with the other models showed a significant improvement in performance of SVR in respect of CART and ARIMA model. SVR models proved a promising approach to support water management and decision making for productive activities, potentially also in other basins in the region.Fil: Teverovsky Korsic, Sofia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales; Argentina. Universidad Nacional de Luján; ArgentinaFil: Notarnicola. Claudia. European Academy of Bozen; ItaliaFil: Uriburu Quirno, Marcelo. Comision Nacional de Actividades Espaciales; ArgentinaFil: Cara Ramirez, Leandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaElsevier2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233024Teverovsky Korsic, Sofia Andrea; Notarnicola. Claudia; Uriburu Quirno, Marcelo; Cara Ramirez, Leandro Javier; Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina; Elsevier; Environmental Challenges; 10; 1-2023; 1-92667-0100CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2667010023000033info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envc.2023.100680info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:15Zoai:ri.conicet.gov.ar:11336/233024instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:15.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina |
title |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina |
spellingShingle |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina Teverovsky Korsic, Sofia Andrea Support Vector Regression Runoff Prediction Remote Sensing Machine learning techniques |
title_short |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina |
title_full |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina |
title_fullStr |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina |
title_full_unstemmed |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina |
title_sort |
Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina |
dc.creator.none.fl_str_mv |
Teverovsky Korsic, Sofia Andrea Notarnicola. Claudia Uriburu Quirno, Marcelo Cara Ramirez, Leandro Javier |
author |
Teverovsky Korsic, Sofia Andrea |
author_facet |
Teverovsky Korsic, Sofia Andrea Notarnicola. Claudia Uriburu Quirno, Marcelo Cara Ramirez, Leandro Javier |
author_role |
author |
author2 |
Notarnicola. Claudia Uriburu Quirno, Marcelo Cara Ramirez, Leandro Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Support Vector Regression Runoff Prediction Remote Sensing Machine learning techniques |
topic |
Support Vector Regression Runoff Prediction Remote Sensing Machine learning techniques |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the semi-arid Central Andes of Argentina, the water from snowmelt runoff plays a fundamental role as a provider of ecosystem services. Nowadays, the global climate change has an observable negative impact on this area, due, principally, to the decrease in both liquid and solid rainfall, with the consequent decrease in water availability. In this context, runoff prediction acquires vital importance for the integrated water resources management. The aim of this study is to investigate the performance of the Support Vector Regression (SVR) technique in predicting monthly discharges with 1-month lead-time in the Tupungato River basin in the Central Andes of Argentina. This methodology has never been applied before in this mountainous region. Different inputs, like meteorological data and satellite-based snow cover area estimates from MODIS, were analyzed in order to identify the suitable inputs predictors to forecast monthly streamflow. The results were compared against the results derived from a Classification and Regression Tree (CART) model and, also, against an Auto-regressive Integrated Moving-average (ARIMA) model. Different metrics were used to evaluate the performance of the SVR tests in reproducing streamflow observations at the basin outlet. The coefficient of determination for each of the analyzed tests lays between 0.75 and 0.89 in the validation set. The comparison with the other models showed a significant improvement in performance of SVR in respect of CART and ARIMA model. SVR models proved a promising approach to support water management and decision making for productive activities, potentially also in other basins in the region. Fil: Teverovsky Korsic, Sofia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales; Argentina. Universidad Nacional de Luján; Argentina Fil: Notarnicola. Claudia. European Academy of Bozen; Italia Fil: Uriburu Quirno, Marcelo. Comision Nacional de Actividades Espaciales; Argentina Fil: Cara Ramirez, Leandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina |
description |
In the semi-arid Central Andes of Argentina, the water from snowmelt runoff plays a fundamental role as a provider of ecosystem services. Nowadays, the global climate change has an observable negative impact on this area, due, principally, to the decrease in both liquid and solid rainfall, with the consequent decrease in water availability. In this context, runoff prediction acquires vital importance for the integrated water resources management. The aim of this study is to investigate the performance of the Support Vector Regression (SVR) technique in predicting monthly discharges with 1-month lead-time in the Tupungato River basin in the Central Andes of Argentina. This methodology has never been applied before in this mountainous region. Different inputs, like meteorological data and satellite-based snow cover area estimates from MODIS, were analyzed in order to identify the suitable inputs predictors to forecast monthly streamflow. The results were compared against the results derived from a Classification and Regression Tree (CART) model and, also, against an Auto-regressive Integrated Moving-average (ARIMA) model. Different metrics were used to evaluate the performance of the SVR tests in reproducing streamflow observations at the basin outlet. The coefficient of determination for each of the analyzed tests lays between 0.75 and 0.89 in the validation set. The comparison with the other models showed a significant improvement in performance of SVR in respect of CART and ARIMA model. SVR models proved a promising approach to support water management and decision making for productive activities, potentially also in other basins in the region. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/233024 Teverovsky Korsic, Sofia Andrea; Notarnicola. Claudia; Uriburu Quirno, Marcelo; Cara Ramirez, Leandro Javier; Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina; Elsevier; Environmental Challenges; 10; 1-2023; 1-9 2667-0100 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/233024 |
identifier_str_mv |
Teverovsky Korsic, Sofia Andrea; Notarnicola. Claudia; Uriburu Quirno, Marcelo; Cara Ramirez, Leandro Javier; Assessing a data-driven approach for monthly runoff prediction in a mountain basin of the Central Andes of Argentina; Elsevier; Environmental Challenges; 10; 1-2023; 1-9 2667-0100 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2667010023000033 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envc.2023.100680 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614417311858688 |
score |
13.070432 |