Analyzing mass media influence using natural language processing and time series analysis

Autores
Albanese, Federico; Pinto, Sebastián; Semeshenko, Viktoriya; Balenzuela, Pablo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest.
Fil: Albanese, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Pinto, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Semeshenko, Viktoriya. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
Fil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
MASS MEDIA INFLUENCE
SENTIMENT ANALYSIS
TIME SERIES ANALYSIS
TOPIC DETECTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146101

id CONICETDig_ce28ba6ff7c3e6dbd7f9044f0e0107af
oai_identifier_str oai:ri.conicet.gov.ar:11336/146101
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analyzing mass media influence using natural language processing and time series analysisAlbanese, FedericoPinto, SebastiánSemeshenko, ViktoriyaBalenzuela, PabloMASS MEDIA INFLUENCESENTIMENT ANALYSISTIME SERIES ANALYSISTOPIC DETECTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest.Fil: Albanese, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Pinto, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Semeshenko, Viktoriya. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; ArgentinaFil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaIOP Publishing2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146101Albanese, Federico; Pinto, Sebastián; Semeshenko, Viktoriya; Balenzuela, Pablo; Analyzing mass media influence using natural language processing and time series analysis; IOP Publishing; Journal of Physics: Complexity; 1; 2; 7-2020; 1-132632-072XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-072X/ab8784info:eu-repo/semantics/altIdentifier/doi/10.1088/2632-072X/ab8784info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:53Zoai:ri.conicet.gov.ar:11336/146101instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:54.001CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analyzing mass media influence using natural language processing and time series analysis
title Analyzing mass media influence using natural language processing and time series analysis
spellingShingle Analyzing mass media influence using natural language processing and time series analysis
Albanese, Federico
MASS MEDIA INFLUENCE
SENTIMENT ANALYSIS
TIME SERIES ANALYSIS
TOPIC DETECTION
title_short Analyzing mass media influence using natural language processing and time series analysis
title_full Analyzing mass media influence using natural language processing and time series analysis
title_fullStr Analyzing mass media influence using natural language processing and time series analysis
title_full_unstemmed Analyzing mass media influence using natural language processing and time series analysis
title_sort Analyzing mass media influence using natural language processing and time series analysis
dc.creator.none.fl_str_mv Albanese, Federico
Pinto, Sebastián
Semeshenko, Viktoriya
Balenzuela, Pablo
author Albanese, Federico
author_facet Albanese, Federico
Pinto, Sebastián
Semeshenko, Viktoriya
Balenzuela, Pablo
author_role author
author2 Pinto, Sebastián
Semeshenko, Viktoriya
Balenzuela, Pablo
author2_role author
author
author
dc.subject.none.fl_str_mv MASS MEDIA INFLUENCE
SENTIMENT ANALYSIS
TIME SERIES ANALYSIS
TOPIC DETECTION
topic MASS MEDIA INFLUENCE
SENTIMENT ANALYSIS
TIME SERIES ANALYSIS
TOPIC DETECTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest.
Fil: Albanese, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Pinto, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Semeshenko, Viktoriya. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
Fil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146101
Albanese, Federico; Pinto, Sebastián; Semeshenko, Viktoriya; Balenzuela, Pablo; Analyzing mass media influence using natural language processing and time series analysis; IOP Publishing; Journal of Physics: Complexity; 1; 2; 7-2020; 1-13
2632-072X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146101
identifier_str_mv Albanese, Federico; Pinto, Sebastián; Semeshenko, Viktoriya; Balenzuela, Pablo; Analyzing mass media influence using natural language processing and time series analysis; IOP Publishing; Journal of Physics: Complexity; 1; 2; 7-2020; 1-13
2632-072X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-072X/ab8784
info:eu-repo/semantics/altIdentifier/doi/10.1088/2632-072X/ab8784
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614462735122432
score 13.070432