Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
- Autores
- Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; Schwarzbach, Jens; Lindenberger, Ulman; Deco, Gustavo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications.
Fil: Donnelly Kehoe, Patricio Andres. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina
Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España
Fil: Lisofsky, Nina. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania
Fil: Kühn, Simone. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. Aarhus University. Aarhus Institute Of Advanced Studies.; Dinamarca
Fil: Schwarzbach, Jens. Universitat Regensburg; Alemania
Fil: Lindenberger, Ulman. Max Planck Institute For Human Development; Alemania
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España - Materia
-
BRAIN METRICS
BRAIN OSCILLATIONS
CONSISTENCY
WHOLE-BRAIN MODELING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153410
Ver los metadatos del registro completo
id |
CONICETDig_cc6dd8b71400bcc698b410a8c84e1ff2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153410 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activityDonnelly Kehoe, Patricio AndresSaenger, Victor M.Lisofsky, NinaKühn, SimoneKringelbach, Morten L.Schwarzbach, JensLindenberger, UlmanDeco, GustavoBRAIN METRICSBRAIN OSCILLATIONSCONSISTENCYWHOLE-BRAIN MODELINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications.Fil: Donnelly Kehoe, Patricio Andres. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Saenger, Victor M.. Universitat Pompeu Fabra; EspañaFil: Lisofsky, Nina. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; AlemaniaFil: Kühn, Simone. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; AlemaniaFil: Kringelbach, Morten L.. University of Oxford; Reino Unido. Aarhus University. Aarhus Institute Of Advanced Studies.; DinamarcaFil: Schwarzbach, Jens. Universitat Regensburg; AlemaniaFil: Lindenberger, Ulman. Max Planck Institute For Human Development; AlemaniaFil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaWiley-liss, div John Wiley & Sons Inc.2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153410Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; et al.; Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 40; 10; 3-2019; 2967-29801065-9471CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24572info:eu-repo/semantics/altIdentifier/doi/10.1002/hbm.24572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:33Zoai:ri.conicet.gov.ar:11336/153410instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:34.258CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity |
title |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity |
spellingShingle |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity Donnelly Kehoe, Patricio Andres BRAIN METRICS BRAIN OSCILLATIONS CONSISTENCY WHOLE-BRAIN MODELING |
title_short |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity |
title_full |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity |
title_fullStr |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity |
title_full_unstemmed |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity |
title_sort |
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity |
dc.creator.none.fl_str_mv |
Donnelly Kehoe, Patricio Andres Saenger, Victor M. Lisofsky, Nina Kühn, Simone Kringelbach, Morten L. Schwarzbach, Jens Lindenberger, Ulman Deco, Gustavo |
author |
Donnelly Kehoe, Patricio Andres |
author_facet |
Donnelly Kehoe, Patricio Andres Saenger, Victor M. Lisofsky, Nina Kühn, Simone Kringelbach, Morten L. Schwarzbach, Jens Lindenberger, Ulman Deco, Gustavo |
author_role |
author |
author2 |
Saenger, Victor M. Lisofsky, Nina Kühn, Simone Kringelbach, Morten L. Schwarzbach, Jens Lindenberger, Ulman Deco, Gustavo |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
BRAIN METRICS BRAIN OSCILLATIONS CONSISTENCY WHOLE-BRAIN MODELING |
topic |
BRAIN METRICS BRAIN OSCILLATIONS CONSISTENCY WHOLE-BRAIN MODELING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications. Fil: Donnelly Kehoe, Patricio Andres. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España Fil: Lisofsky, Nina. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania Fil: Kühn, Simone. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. Aarhus University. Aarhus Institute Of Advanced Studies.; Dinamarca Fil: Schwarzbach, Jens. Universitat Regensburg; Alemania Fil: Lindenberger, Ulman. Max Planck Institute For Human Development; Alemania Fil: Deco, Gustavo. Universitat Pompeu Fabra; España |
description |
Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153410 Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; et al.; Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 40; 10; 3-2019; 2967-2980 1065-9471 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153410 |
identifier_str_mv |
Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; et al.; Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 40; 10; 3-2019; 2967-2980 1065-9471 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24572 info:eu-repo/semantics/altIdentifier/doi/10.1002/hbm.24572 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley-liss, div John Wiley & Sons Inc. |
publisher.none.fl_str_mv |
Wiley-liss, div John Wiley & Sons Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269763290529793 |
score |
13.13397 |