Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity

Autores
Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; Schwarzbach, Jens; Lindenberger, Ulman; Deco, Gustavo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications.
Fil: Donnelly Kehoe, Patricio Andres. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina
Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España
Fil: Lisofsky, Nina. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania
Fil: Kühn, Simone. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. Aarhus University. Aarhus Institute Of Advanced Studies.; Dinamarca
Fil: Schwarzbach, Jens. Universitat Regensburg; Alemania
Fil: Lindenberger, Ulman. Max Planck Institute For Human Development; Alemania
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
Materia
BRAIN METRICS
BRAIN OSCILLATIONS
CONSISTENCY
WHOLE-BRAIN MODELING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/153410

id CONICETDig_cc6dd8b71400bcc698b410a8c84e1ff2
oai_identifier_str oai:ri.conicet.gov.ar:11336/153410
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activityDonnelly Kehoe, Patricio AndresSaenger, Victor M.Lisofsky, NinaKühn, SimoneKringelbach, Morten L.Schwarzbach, JensLindenberger, UlmanDeco, GustavoBRAIN METRICSBRAIN OSCILLATIONSCONSISTENCYWHOLE-BRAIN MODELINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications.Fil: Donnelly Kehoe, Patricio Andres. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Saenger, Victor M.. Universitat Pompeu Fabra; EspañaFil: Lisofsky, Nina. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; AlemaniaFil: Kühn, Simone. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; AlemaniaFil: Kringelbach, Morten L.. University of Oxford; Reino Unido. Aarhus University. Aarhus Institute Of Advanced Studies.; DinamarcaFil: Schwarzbach, Jens. Universitat Regensburg; AlemaniaFil: Lindenberger, Ulman. Max Planck Institute For Human Development; AlemaniaFil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaWiley-liss, div John Wiley & Sons Inc.2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153410Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; et al.; Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 40; 10; 3-2019; 2967-29801065-9471CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24572info:eu-repo/semantics/altIdentifier/doi/10.1002/hbm.24572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:33Zoai:ri.conicet.gov.ar:11336/153410instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:34.258CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
title Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
spellingShingle Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
Donnelly Kehoe, Patricio Andres
BRAIN METRICS
BRAIN OSCILLATIONS
CONSISTENCY
WHOLE-BRAIN MODELING
title_short Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
title_full Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
title_fullStr Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
title_full_unstemmed Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
title_sort Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
dc.creator.none.fl_str_mv Donnelly Kehoe, Patricio Andres
Saenger, Victor M.
Lisofsky, Nina
Kühn, Simone
Kringelbach, Morten L.
Schwarzbach, Jens
Lindenberger, Ulman
Deco, Gustavo
author Donnelly Kehoe, Patricio Andres
author_facet Donnelly Kehoe, Patricio Andres
Saenger, Victor M.
Lisofsky, Nina
Kühn, Simone
Kringelbach, Morten L.
Schwarzbach, Jens
Lindenberger, Ulman
Deco, Gustavo
author_role author
author2 Saenger, Victor M.
Lisofsky, Nina
Kühn, Simone
Kringelbach, Morten L.
Schwarzbach, Jens
Lindenberger, Ulman
Deco, Gustavo
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BRAIN METRICS
BRAIN OSCILLATIONS
CONSISTENCY
WHOLE-BRAIN MODELING
topic BRAIN METRICS
BRAIN OSCILLATIONS
CONSISTENCY
WHOLE-BRAIN MODELING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.6
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications.
Fil: Donnelly Kehoe, Patricio Andres. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina
Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España
Fil: Lisofsky, Nina. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania
Fil: Kühn, Simone. Max Planck Institute For Human Development; Alemania. University Clinic Hamburg-Eppendorf; Alemania
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. Aarhus University. Aarhus Institute Of Advanced Studies.; Dinamarca
Fil: Schwarzbach, Jens. Universitat Regensburg; Alemania
Fil: Lindenberger, Ulman. Max Planck Institute For Human Development; Alemania
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
description Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing brain activity at “rest” is highly dynamic, but procedures such as correlation or independent component analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-subject level marker and it is limited to group studies. Here we develop an imaging-based technique capable of reliably portraying information of local dynamics at a single-subject level by using a whole-brain model of ongoing dynamics that estimates a local parameter, which reflects if each brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state sessions of one single subject and single resting-state sessions from a group of 50 participants we demonstrate that brain dynamics can be quantified consistently with respect to group dynamics using a scanning time of 20 min. We show that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs showed higher consistency within the same subject while the inter-session variability found in primary visual and motor areas was only as high as the one found across subjects. The framework presented here can be used to study functional brain dynamics at group and, more importantly, at individual level, opening new avenues for possible clinical applications.
publishDate 2019
dc.date.none.fl_str_mv 2019-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/153410
Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; et al.; Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 40; 10; 3-2019; 2967-2980
1065-9471
CONICET Digital
CONICET
url http://hdl.handle.net/11336/153410
identifier_str_mv Donnelly Kehoe, Patricio Andres; Saenger, Victor M.; Lisofsky, Nina; Kühn, Simone; Kringelbach, Morten L.; et al.; Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 40; 10; 3-2019; 2967-2980
1065-9471
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24572
info:eu-repo/semantics/altIdentifier/doi/10.1002/hbm.24572
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley-liss, div John Wiley & Sons Inc.
publisher.none.fl_str_mv Wiley-liss, div John Wiley & Sons Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269763290529793
score 13.13397