Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states

Autores
Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Someren, Eus Van; Jobst, Beatrice; Stevner, Angus; Kringelbach, Morten L.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.
Fil: Deco, Gustavo. Max Planck Institut für Kognitions- und Neurowissenschaften; Alemania. Universitat Pompeu Fabra; España. Monash University; Australia. Institució Catalana de Recerca i Estudis Avancats; España
Fil: Cabral, Joana. University Aarhus; Dinamarca. University of Oxford; Reino Unido. Universidade do Minho. Escola de Ciencias da Saude; Portugal
Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España
Fil: Boly, Melanie. University of Wisconsin; Estados Unidos
Fil: Tagliazucchi, Enzo Rodolfo. Christian-Albrechts-University zu Kiel; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. Christian-Albrechts-University zu Kiel; Alemania
Fil: Someren, Eus Van. Royal Netherlands Academy of Arts and Science; Países Bajos. Vrije Unviversiteit Brussel; Bélgica
Fil: Jobst, Beatrice. Universitat Pompeu Fabra; España
Fil: Stevner, Angus. University of Oxford; Reino Unido. University Aarhus; Dinamarca
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Institut d’Études Avancées de Paris; Francia. Universidade do Minho. Escola de Ciencias da Saude; Portugal
Materia
BRAIN STATE
PERTURBATION
SLEEP
WHOLE BRAIN MODELING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96791

id CONICETDig_1a447d2a9c0dc5e67c08ef1430483e32
oai_identifier_str oai:ri.conicet.gov.ar:11336/96791
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain statesDeco, GustavoCabral, JoanaSaenger, Victor M.Boly, MelanieTagliazucchi, Enzo RodolfoLaufs, HelmutSomeren, Eus VanJobst, BeatriceStevner, AngusKringelbach, Morten L.BRAIN STATEPERTURBATIONSLEEPWHOLE BRAIN MODELINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.Fil: Deco, Gustavo. Max Planck Institut für Kognitions- und Neurowissenschaften; Alemania. Universitat Pompeu Fabra; España. Monash University; Australia. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: Cabral, Joana. University Aarhus; Dinamarca. University of Oxford; Reino Unido. Universidade do Minho. Escola de Ciencias da Saude; PortugalFil: Saenger, Victor M.. Universitat Pompeu Fabra; EspañaFil: Boly, Melanie. University of Wisconsin; Estados UnidosFil: Tagliazucchi, Enzo Rodolfo. Christian-Albrechts-University zu Kiel; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. Christian-Albrechts-University zu Kiel; AlemaniaFil: Someren, Eus Van. Royal Netherlands Academy of Arts and Science; Países Bajos. Vrije Unviversiteit Brussel; BélgicaFil: Jobst, Beatrice. Universitat Pompeu Fabra; EspañaFil: Stevner, Angus. University of Oxford; Reino Unido. University Aarhus; DinamarcaFil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Institut d’Études Avancées de Paris; Francia. Universidade do Minho. Escola de Ciencias da Saude; PortugalAcademic Press2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96791Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; et al.; Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states; Academic Press; Journal Neuroimag; 169; 4-2018; 46-561053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2017.12.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811917310236info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:24Zoai:ri.conicet.gov.ar:11336/96791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:24.912CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
title Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
spellingShingle Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
Deco, Gustavo
BRAIN STATE
PERTURBATION
SLEEP
WHOLE BRAIN MODELING
title_short Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
title_full Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
title_fullStr Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
title_full_unstemmed Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
title_sort Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
dc.creator.none.fl_str_mv Deco, Gustavo
Cabral, Joana
Saenger, Victor M.
Boly, Melanie
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Someren, Eus Van
Jobst, Beatrice
Stevner, Angus
Kringelbach, Morten L.
author Deco, Gustavo
author_facet Deco, Gustavo
Cabral, Joana
Saenger, Victor M.
Boly, Melanie
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Someren, Eus Van
Jobst, Beatrice
Stevner, Angus
Kringelbach, Morten L.
author_role author
author2 Cabral, Joana
Saenger, Victor M.
Boly, Melanie
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Someren, Eus Van
Jobst, Beatrice
Stevner, Angus
Kringelbach, Morten L.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BRAIN STATE
PERTURBATION
SLEEP
WHOLE BRAIN MODELING
topic BRAIN STATE
PERTURBATION
SLEEP
WHOLE BRAIN MODELING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.
Fil: Deco, Gustavo. Max Planck Institut für Kognitions- und Neurowissenschaften; Alemania. Universitat Pompeu Fabra; España. Monash University; Australia. Institució Catalana de Recerca i Estudis Avancats; España
Fil: Cabral, Joana. University Aarhus; Dinamarca. University of Oxford; Reino Unido. Universidade do Minho. Escola de Ciencias da Saude; Portugal
Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España
Fil: Boly, Melanie. University of Wisconsin; Estados Unidos
Fil: Tagliazucchi, Enzo Rodolfo. Christian-Albrechts-University zu Kiel; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. Christian-Albrechts-University zu Kiel; Alemania
Fil: Someren, Eus Van. Royal Netherlands Academy of Arts and Science; Países Bajos. Vrije Unviversiteit Brussel; Bélgica
Fil: Jobst, Beatrice. Universitat Pompeu Fabra; España
Fil: Stevner, Angus. University of Oxford; Reino Unido. University Aarhus; Dinamarca
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Institut d’Études Avancées de Paris; Francia. Universidade do Minho. Escola de Ciencias da Saude; Portugal
description Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96791
Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; et al.; Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states; Academic Press; Journal Neuroimag; 169; 4-2018; 46-56
1053-8119
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96791
identifier_str_mv Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; et al.; Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states; Academic Press; Journal Neuroimag; 169; 4-2018; 46-56
1053-8119
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2017.12.009
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811917310236
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press
publisher.none.fl_str_mv Academic Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980892613541888
score 12.993085