Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
- Autores
- Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Someren, Eus Van; Jobst, Beatrice; Stevner, Angus; Kringelbach, Morten L.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.
Fil: Deco, Gustavo. Max Planck Institut für Kognitions- und Neurowissenschaften; Alemania. Universitat Pompeu Fabra; España. Monash University; Australia. Institució Catalana de Recerca i Estudis Avancats; España
Fil: Cabral, Joana. University Aarhus; Dinamarca. University of Oxford; Reino Unido. Universidade do Minho. Escola de Ciencias da Saude; Portugal
Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España
Fil: Boly, Melanie. University of Wisconsin; Estados Unidos
Fil: Tagliazucchi, Enzo Rodolfo. Christian-Albrechts-University zu Kiel; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. Christian-Albrechts-University zu Kiel; Alemania
Fil: Someren, Eus Van. Royal Netherlands Academy of Arts and Science; Países Bajos. Vrije Unviversiteit Brussel; Bélgica
Fil: Jobst, Beatrice. Universitat Pompeu Fabra; España
Fil: Stevner, Angus. University of Oxford; Reino Unido. University Aarhus; Dinamarca
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Institut d’Études Avancées de Paris; Francia. Universidade do Minho. Escola de Ciencias da Saude; Portugal - Materia
-
BRAIN STATE
PERTURBATION
SLEEP
WHOLE BRAIN MODELING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96791
Ver los metadatos del registro completo
id |
CONICETDig_1a447d2a9c0dc5e67c08ef1430483e32 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96791 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain statesDeco, GustavoCabral, JoanaSaenger, Victor M.Boly, MelanieTagliazucchi, Enzo RodolfoLaufs, HelmutSomeren, Eus VanJobst, BeatriceStevner, AngusKringelbach, Morten L.BRAIN STATEPERTURBATIONSLEEPWHOLE BRAIN MODELINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.Fil: Deco, Gustavo. Max Planck Institut für Kognitions- und Neurowissenschaften; Alemania. Universitat Pompeu Fabra; España. Monash University; Australia. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: Cabral, Joana. University Aarhus; Dinamarca. University of Oxford; Reino Unido. Universidade do Minho. Escola de Ciencias da Saude; PortugalFil: Saenger, Victor M.. Universitat Pompeu Fabra; EspañaFil: Boly, Melanie. University of Wisconsin; Estados UnidosFil: Tagliazucchi, Enzo Rodolfo. Christian-Albrechts-University zu Kiel; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. Christian-Albrechts-University zu Kiel; AlemaniaFil: Someren, Eus Van. Royal Netherlands Academy of Arts and Science; Países Bajos. Vrije Unviversiteit Brussel; BélgicaFil: Jobst, Beatrice. Universitat Pompeu Fabra; EspañaFil: Stevner, Angus. University of Oxford; Reino Unido. University Aarhus; DinamarcaFil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Institut d’Études Avancées de Paris; Francia. Universidade do Minho. Escola de Ciencias da Saude; PortugalAcademic Press2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96791Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; et al.; Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states; Academic Press; Journal Neuroimag; 169; 4-2018; 46-561053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2017.12.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811917310236info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:24Zoai:ri.conicet.gov.ar:11336/96791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:24.912CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states |
title |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states |
spellingShingle |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states Deco, Gustavo BRAIN STATE PERTURBATION SLEEP WHOLE BRAIN MODELING |
title_short |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states |
title_full |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states |
title_fullStr |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states |
title_full_unstemmed |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states |
title_sort |
Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states |
dc.creator.none.fl_str_mv |
Deco, Gustavo Cabral, Joana Saenger, Victor M. Boly, Melanie Tagliazucchi, Enzo Rodolfo Laufs, Helmut Someren, Eus Van Jobst, Beatrice Stevner, Angus Kringelbach, Morten L. |
author |
Deco, Gustavo |
author_facet |
Deco, Gustavo Cabral, Joana Saenger, Victor M. Boly, Melanie Tagliazucchi, Enzo Rodolfo Laufs, Helmut Someren, Eus Van Jobst, Beatrice Stevner, Angus Kringelbach, Morten L. |
author_role |
author |
author2 |
Cabral, Joana Saenger, Victor M. Boly, Melanie Tagliazucchi, Enzo Rodolfo Laufs, Helmut Someren, Eus Van Jobst, Beatrice Stevner, Angus Kringelbach, Morten L. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
BRAIN STATE PERTURBATION SLEEP WHOLE BRAIN MODELING |
topic |
BRAIN STATE PERTURBATION SLEEP WHOLE BRAIN MODELING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states. Fil: Deco, Gustavo. Max Planck Institut für Kognitions- und Neurowissenschaften; Alemania. Universitat Pompeu Fabra; España. Monash University; Australia. Institució Catalana de Recerca i Estudis Avancats; España Fil: Cabral, Joana. University Aarhus; Dinamarca. University of Oxford; Reino Unido. Universidade do Minho. Escola de Ciencias da Saude; Portugal Fil: Saenger, Victor M.. Universitat Pompeu Fabra; España Fil: Boly, Melanie. University of Wisconsin; Estados Unidos Fil: Tagliazucchi, Enzo Rodolfo. Christian-Albrechts-University zu Kiel; Alemania. Goethe Universitat Frankfurt; Alemania Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. Christian-Albrechts-University zu Kiel; Alemania Fil: Someren, Eus Van. Royal Netherlands Academy of Arts and Science; Países Bajos. Vrije Unviversiteit Brussel; Bélgica Fil: Jobst, Beatrice. Universitat Pompeu Fabra; España Fil: Stevner, Angus. University of Oxford; Reino Unido. University Aarhus; Dinamarca Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca. Institut d’Études Avancées de Paris; Francia. Universidade do Minho. Escola de Ciencias da Saude; Portugal |
description |
Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96791 Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; et al.; Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states; Academic Press; Journal Neuroimag; 169; 4-2018; 46-56 1053-8119 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96791 |
identifier_str_mv |
Deco, Gustavo; Cabral, Joana; Saenger, Victor M.; Boly, Melanie; Tagliazucchi, Enzo Rodolfo; et al.; Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states; Academic Press; Journal Neuroimag; 169; 4-2018; 46-56 1053-8119 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2017.12.009 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811917310236 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press |
publisher.none.fl_str_mv |
Academic Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980892613541888 |
score |
12.993085 |