Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury
- Autores
- Martínez Molina, Noelia; Sanz Perl Hernandez, Yonatan; Escrichs, Anira; Kringelbach, Morten L.; Deco, Gustavo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.
Fil: Martínez Molina, Noelia. Universitat Pompeu Fabra; España
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Escrichs, Anira. Universitat Pompeu Fabra; España
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España - Materia
-
Neuroimaging
Turbulence
Traumatic Brain Injury
Whole-brain model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/251825
Ver los metadatos del registro completo
id |
CONICETDig_f86db031e14a91938ca05c72f67b906e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/251825 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injuryMartínez Molina, NoeliaSanz Perl Hernandez, YonatanEscrichs, AniraKringelbach, Morten L.Deco, GustavoNeuroimagingTurbulenceTraumatic Brain InjuryWhole-brain modelhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.Fil: Martínez Molina, Noelia. Universitat Pompeu Fabra; EspañaFil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Escrichs, Anira. Universitat Pompeu Fabra; EspañaFil: Kringelbach, Morten L.. University of Oxford; Reino UnidoFil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaFrontiers Media2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251825Martínez Molina, Noelia; Sanz Perl Hernandez, Yonatan; Escrichs, Anira; Kringelbach, Morten L.; Deco, Gustavo; Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury; Frontiers Media; Frontiers in Neuroinformatics; 18; 3-2024; 1-71662-5196CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fninf.2024.1382372/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fninf.2024.1382372info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:15Zoai:ri.conicet.gov.ar:11336/251825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:15.758CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury |
title |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury |
spellingShingle |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury Martínez Molina, Noelia Neuroimaging Turbulence Traumatic Brain Injury Whole-brain model |
title_short |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury |
title_full |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury |
title_fullStr |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury |
title_full_unstemmed |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury |
title_sort |
Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury |
dc.creator.none.fl_str_mv |
Martínez Molina, Noelia Sanz Perl Hernandez, Yonatan Escrichs, Anira Kringelbach, Morten L. Deco, Gustavo |
author |
Martínez Molina, Noelia |
author_facet |
Martínez Molina, Noelia Sanz Perl Hernandez, Yonatan Escrichs, Anira Kringelbach, Morten L. Deco, Gustavo |
author_role |
author |
author2 |
Sanz Perl Hernandez, Yonatan Escrichs, Anira Kringelbach, Morten L. Deco, Gustavo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Neuroimaging Turbulence Traumatic Brain Injury Whole-brain model |
topic |
Neuroimaging Turbulence Traumatic Brain Injury Whole-brain model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery. Fil: Martínez Molina, Noelia. Universitat Pompeu Fabra; España Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Escrichs, Anira. Universitat Pompeu Fabra; España Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido Fil: Deco, Gustavo. Universitat Pompeu Fabra; España |
description |
Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/251825 Martínez Molina, Noelia; Sanz Perl Hernandez, Yonatan; Escrichs, Anira; Kringelbach, Morten L.; Deco, Gustavo; Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury; Frontiers Media; Frontiers in Neuroinformatics; 18; 3-2024; 1-7 1662-5196 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/251825 |
identifier_str_mv |
Martínez Molina, Noelia; Sanz Perl Hernandez, Yonatan; Escrichs, Anira; Kringelbach, Morten L.; Deco, Gustavo; Turbulent dynamics and whole-brain modeling: toward new clinical applications for traumatic brain injury; Frontiers Media; Frontiers in Neuroinformatics; 18; 3-2024; 1-7 1662-5196 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fninf.2024.1382372/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fninf.2024.1382372 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613421390102528 |
score |
13.070432 |