Data-driven discovery of canonical large-scale brain dynamics
- Autores
- Piccinini, Juan Ignacio; Deco, Gustavo; Kringelbach, Morten; Laufs, Helmut; Sanz Perl Hernandez, Yonatan; Tagliazucchi, Enzo Rodolfo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity.
Fil: Piccinini, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
Fil: Kringelbach, Morten. University of Oxford; Reino Unido
Fil: Laufs, Helmut. University of Kiel; Alemania
Fil: Sanz Perl Hernandez, Yonatan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BRAIN DYNAMICS
WHOLE-BRAIN MODELS
DATA-DRIVEN MODELS
SLEEP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/206393
Ver los metadatos del registro completo
| id |
CONICETDig_102838e8f7934b335dd7fd87acfbabc9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/206393 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Data-driven discovery of canonical large-scale brain dynamicsPiccinini, Juan IgnacioDeco, GustavoKringelbach, MortenLaufs, HelmutSanz Perl Hernandez, YonatanTagliazucchi, Enzo RodolfoBRAIN DYNAMICSWHOLE-BRAIN MODELSDATA-DRIVEN MODELSSLEEPhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity.Fil: Piccinini, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaFil: Kringelbach, Morten. University of Oxford; Reino UnidoFil: Laufs, Helmut. University of Kiel; AlemaniaFil: Sanz Perl Hernandez, Yonatan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/206393Piccinini, Juan Ignacio; Deco, Gustavo; Kringelbach, Morten; Laufs, Helmut; Sanz Perl Hernandez, Yonatan; et al.; Data-driven discovery of canonical large-scale brain dynamics; Oxford University Press; Cerebral Cortex Communications; 3; 4; 10-2022; 1-122632-7376CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/cercorcomms/article/doi/10.1093/texcom/tgac045/6794020info:eu-repo/semantics/altIdentifier/doi/10.1093/texcom/tgac045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:33:43Zoai:ri.conicet.gov.ar:11336/206393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:33:43.814CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Data-driven discovery of canonical large-scale brain dynamics |
| title |
Data-driven discovery of canonical large-scale brain dynamics |
| spellingShingle |
Data-driven discovery of canonical large-scale brain dynamics Piccinini, Juan Ignacio BRAIN DYNAMICS WHOLE-BRAIN MODELS DATA-DRIVEN MODELS SLEEP |
| title_short |
Data-driven discovery of canonical large-scale brain dynamics |
| title_full |
Data-driven discovery of canonical large-scale brain dynamics |
| title_fullStr |
Data-driven discovery of canonical large-scale brain dynamics |
| title_full_unstemmed |
Data-driven discovery of canonical large-scale brain dynamics |
| title_sort |
Data-driven discovery of canonical large-scale brain dynamics |
| dc.creator.none.fl_str_mv |
Piccinini, Juan Ignacio Deco, Gustavo Kringelbach, Morten Laufs, Helmut Sanz Perl Hernandez, Yonatan Tagliazucchi, Enzo Rodolfo |
| author |
Piccinini, Juan Ignacio |
| author_facet |
Piccinini, Juan Ignacio Deco, Gustavo Kringelbach, Morten Laufs, Helmut Sanz Perl Hernandez, Yonatan Tagliazucchi, Enzo Rodolfo |
| author_role |
author |
| author2 |
Deco, Gustavo Kringelbach, Morten Laufs, Helmut Sanz Perl Hernandez, Yonatan Tagliazucchi, Enzo Rodolfo |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
BRAIN DYNAMICS WHOLE-BRAIN MODELS DATA-DRIVEN MODELS SLEEP |
| topic |
BRAIN DYNAMICS WHOLE-BRAIN MODELS DATA-DRIVEN MODELS SLEEP |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity. Fil: Piccinini, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Deco, Gustavo. Universitat Pompeu Fabra; España Fil: Kringelbach, Morten. University of Oxford; Reino Unido Fil: Laufs, Helmut. University of Kiel; Alemania Fil: Sanz Perl Hernandez, Yonatan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tagliazucchi, Enzo Rodolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models, while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that characterize endogenous brain activity. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/206393 Piccinini, Juan Ignacio; Deco, Gustavo; Kringelbach, Morten; Laufs, Helmut; Sanz Perl Hernandez, Yonatan; et al.; Data-driven discovery of canonical large-scale brain dynamics; Oxford University Press; Cerebral Cortex Communications; 3; 4; 10-2022; 1-12 2632-7376 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/206393 |
| identifier_str_mv |
Piccinini, Juan Ignacio; Deco, Gustavo; Kringelbach, Morten; Laufs, Helmut; Sanz Perl Hernandez, Yonatan; et al.; Data-driven discovery of canonical large-scale brain dynamics; Oxford University Press; Cerebral Cortex Communications; 3; 4; 10-2022; 1-12 2632-7376 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/cercorcomms/article/doi/10.1093/texcom/tgac045/6794020 info:eu-repo/semantics/altIdentifier/doi/10.1093/texcom/tgac045 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846083466670637056 |
| score |
13.22299 |