SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning
- Autores
- Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With the current trend towards cognitive manufacturing systems to deal with unforeseen events and disturbances that constantly demand real-time repair decisions, learning/reasoning skills and interactive capabilities are important functionalities for rescheduling a shop-floor on the fly taking into account several objectives and goal states. In this work, the automatic generation and update through learning of rescheduling knowledge using simulated transitions of abstract schedule states is proposed. Deictic representations of schedules based on focal points are used to define a repair policy which generates a goal-directed sequence of repair operators to face unplanned events and operational disturbances. An industrial example where rescheduling is needed due to the arrival of a new/rush order, or whenever raw material delay/shortage or machine breakdown events occur are discussed using the SmartGantt prototype for interactive rescheduling in real-time. SmartGantt demonstrates that due date compliance of orders-in-progress, negotiating delivery conditions of new orders and ensuring distributed production control can be dramatically improved by means of relational reinforcement learning and a deictic representation of rescheduling tasks.
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Automated Planning
Information Systems
Manufacturing Systems
Real-Time Rescheduling
Reinforcement Learning
Relational Abstractions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70284
Ver los metadatos del registro completo
id |
CONICETDig_cbbdf34e3f70ac5ca2ff1f6bce2d4a38 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70284 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learningPalombarini, Jorge AndrésMartínez, Ernesto CarlosAutomated PlanningInformation SystemsManufacturing SystemsReal-Time ReschedulingReinforcement LearningRelational Abstractionshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2With the current trend towards cognitive manufacturing systems to deal with unforeseen events and disturbances that constantly demand real-time repair decisions, learning/reasoning skills and interactive capabilities are important functionalities for rescheduling a shop-floor on the fly taking into account several objectives and goal states. In this work, the automatic generation and update through learning of rescheduling knowledge using simulated transitions of abstract schedule states is proposed. Deictic representations of schedules based on focal points are used to define a repair policy which generates a goal-directed sequence of repair operators to face unplanned events and operational disturbances. An industrial example where rescheduling is needed due to the arrival of a new/rush order, or whenever raw material delay/shortage or machine breakdown events occur are discussed using the SmartGantt prototype for interactive rescheduling in real-time. SmartGantt demonstrates that due date compliance of orders-in-progress, negotiating delivery conditions of new orders and ensuring distributed production control can be dramatically improved by means of relational reinforcement learning and a deictic representation of rescheduling tasks.Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier Science Ltd2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70284Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning; Elsevier Science Ltd; Expert Systems with Applications; 39; 11; 9-2012; 10251-102680957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.02.176info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:35Zoai:ri.conicet.gov.ar:11336/70284instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:35.273CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning |
title |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning |
spellingShingle |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning Palombarini, Jorge Andrés Automated Planning Information Systems Manufacturing Systems Real-Time Rescheduling Reinforcement Learning Relational Abstractions |
title_short |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning |
title_full |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning |
title_fullStr |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning |
title_full_unstemmed |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning |
title_sort |
SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning |
dc.creator.none.fl_str_mv |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author |
Palombarini, Jorge Andrés |
author_facet |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Martínez, Ernesto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Automated Planning Information Systems Manufacturing Systems Real-Time Rescheduling Reinforcement Learning Relational Abstractions |
topic |
Automated Planning Information Systems Manufacturing Systems Real-Time Rescheduling Reinforcement Learning Relational Abstractions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
With the current trend towards cognitive manufacturing systems to deal with unforeseen events and disturbances that constantly demand real-time repair decisions, learning/reasoning skills and interactive capabilities are important functionalities for rescheduling a shop-floor on the fly taking into account several objectives and goal states. In this work, the automatic generation and update through learning of rescheduling knowledge using simulated transitions of abstract schedule states is proposed. Deictic representations of schedules based on focal points are used to define a repair policy which generates a goal-directed sequence of repair operators to face unplanned events and operational disturbances. An industrial example where rescheduling is needed due to the arrival of a new/rush order, or whenever raw material delay/shortage or machine breakdown events occur are discussed using the SmartGantt prototype for interactive rescheduling in real-time. SmartGantt demonstrates that due date compliance of orders-in-progress, negotiating delivery conditions of new orders and ensuring distributed production control can be dramatically improved by means of relational reinforcement learning and a deictic representation of rescheduling tasks. Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
With the current trend towards cognitive manufacturing systems to deal with unforeseen events and disturbances that constantly demand real-time repair decisions, learning/reasoning skills and interactive capabilities are important functionalities for rescheduling a shop-floor on the fly taking into account several objectives and goal states. In this work, the automatic generation and update through learning of rescheduling knowledge using simulated transitions of abstract schedule states is proposed. Deictic representations of schedules based on focal points are used to define a repair policy which generates a goal-directed sequence of repair operators to face unplanned events and operational disturbances. An industrial example where rescheduling is needed due to the arrival of a new/rush order, or whenever raw material delay/shortage or machine breakdown events occur are discussed using the SmartGantt prototype for interactive rescheduling in real-time. SmartGantt demonstrates that due date compliance of orders-in-progress, negotiating delivery conditions of new orders and ensuring distributed production control can be dramatically improved by means of relational reinforcement learning and a deictic representation of rescheduling tasks. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70284 Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning; Elsevier Science Ltd; Expert Systems with Applications; 39; 11; 9-2012; 10251-10268 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70284 |
identifier_str_mv |
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; SmartGantt - An intelligent system for real time rescheduling based on relational reinforcement learning; Elsevier Science Ltd; Expert Systems with Applications; 39; 11; 9-2012; 10251-10268 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.02.176 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Ltd |
publisher.none.fl_str_mv |
Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613033079341056 |
score |
13.069144 |