Learning to repair plans and schedules using a relational (deictic) representation
- Autores
- Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.
Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Batch plants
Rescheduling
Reinforcement Learning
Automated planning
Artificial intelligence
Relational modeling
Rescheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70283
Ver los metadatos del registro completo
id |
CONICETDig_9c65b2ac1c3afc3ddad8e2be3bfe010a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70283 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning to repair plans and schedules using a relational (deictic) representationPalombarini, Jorge AndrésMartínez, Ernesto CarlosBatch plantsReschedulingReinforcement LearningAutomated planningArtificial intelligenceRelational modelingReschedulinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaBrazilian Society of Chemical Engineering2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70283Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-4270104-66321678-4383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/S0104-66322010000300006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:58Zoai:ri.conicet.gov.ar:11336/70283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:59.125CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning to repair plans and schedules using a relational (deictic) representation |
title |
Learning to repair plans and schedules using a relational (deictic) representation |
spellingShingle |
Learning to repair plans and schedules using a relational (deictic) representation Palombarini, Jorge Andrés Batch plants Rescheduling Reinforcement Learning Automated planning Artificial intelligence Relational modeling Rescheduling |
title_short |
Learning to repair plans and schedules using a relational (deictic) representation |
title_full |
Learning to repair plans and schedules using a relational (deictic) representation |
title_fullStr |
Learning to repair plans and schedules using a relational (deictic) representation |
title_full_unstemmed |
Learning to repair plans and schedules using a relational (deictic) representation |
title_sort |
Learning to repair plans and schedules using a relational (deictic) representation |
dc.creator.none.fl_str_mv |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author |
Palombarini, Jorge Andrés |
author_facet |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Martínez, Ernesto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Batch plants Rescheduling Reinforcement Learning Automated planning Artificial intelligence Relational modeling Rescheduling |
topic |
Batch plants Rescheduling Reinforcement Learning Automated planning Artificial intelligence Relational modeling Rescheduling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling. Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70283 Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-427 0104-6632 1678-4383 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70283 |
identifier_str_mv |
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-427 0104-6632 1678-4383 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1590/S0104-66322010000300006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613684644544512 |
score |
13.070432 |