Learning to repair plans and schedules using a relational (deictic) representation

Autores
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.
Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
Batch plants
Rescheduling
Reinforcement Learning
Automated planning
Artificial intelligence
Relational modeling
Rescheduling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70283

id CONICETDig_9c65b2ac1c3afc3ddad8e2be3bfe010a
oai_identifier_str oai:ri.conicet.gov.ar:11336/70283
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Learning to repair plans and schedules using a relational (deictic) representationPalombarini, Jorge AndrésMartínez, Ernesto CarlosBatch plantsReschedulingReinforcement LearningAutomated planningArtificial intelligenceRelational modelingReschedulinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaBrazilian Society of Chemical Engineering2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70283Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-4270104-66321678-4383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/S0104-66322010000300006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:58Zoai:ri.conicet.gov.ar:11336/70283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:59.125CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Learning to repair plans and schedules using a relational (deictic) representation
title Learning to repair plans and schedules using a relational (deictic) representation
spellingShingle Learning to repair plans and schedules using a relational (deictic) representation
Palombarini, Jorge Andrés
Batch plants
Rescheduling
Reinforcement Learning
Automated planning
Artificial intelligence
Relational modeling
Rescheduling
title_short Learning to repair plans and schedules using a relational (deictic) representation
title_full Learning to repair plans and schedules using a relational (deictic) representation
title_fullStr Learning to repair plans and schedules using a relational (deictic) representation
title_full_unstemmed Learning to repair plans and schedules using a relational (deictic) representation
title_sort Learning to repair plans and schedules using a relational (deictic) representation
dc.creator.none.fl_str_mv Palombarini, Jorge Andrés
Martínez, Ernesto Carlos
author Palombarini, Jorge Andrés
author_facet Palombarini, Jorge Andrés
Martínez, Ernesto Carlos
author_role author
author2 Martínez, Ernesto Carlos
author2_role author
dc.subject.none.fl_str_mv Batch plants
Rescheduling
Reinforcement Learning
Automated planning
Artificial intelligence
Relational modeling
Rescheduling
topic Batch plants
Rescheduling
Reinforcement Learning
Automated planning
Artificial intelligence
Relational modeling
Rescheduling
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.
Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.
publishDate 2010
dc.date.none.fl_str_mv 2010-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70283
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-427
0104-6632
1678-4383
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70283
identifier_str_mv Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-427
0104-6632
1678-4383
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1590/S0104-66322010000300006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613684644544512
score 13.070432