Learning to repair plans and schedules using a relational (deictic) representation
- Autores
- Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.
Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Batch plants
Rescheduling
Reinforcement Learning
Automated planning
Artificial intelligence
Relational modeling
Rescheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70283
Ver los metadatos del registro completo
| id |
CONICETDig_9c65b2ac1c3afc3ddad8e2be3bfe010a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70283 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Learning to repair plans and schedules using a relational (deictic) representationPalombarini, Jorge AndrésMartínez, Ernesto CarlosBatch plantsReschedulingReinforcement LearningAutomated planningArtificial intelligenceRelational modelingReschedulinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling.Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaBrazilian Society of Chemical Engineering2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70283Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-4270104-66321678-4383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/S0104-66322010000300006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:43:36Zoai:ri.conicet.gov.ar:11336/70283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:43:36.896CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Learning to repair plans and schedules using a relational (deictic) representation |
| title |
Learning to repair plans and schedules using a relational (deictic) representation |
| spellingShingle |
Learning to repair plans and schedules using a relational (deictic) representation Palombarini, Jorge Andrés Batch plants Rescheduling Reinforcement Learning Automated planning Artificial intelligence Relational modeling Rescheduling |
| title_short |
Learning to repair plans and schedules using a relational (deictic) representation |
| title_full |
Learning to repair plans and schedules using a relational (deictic) representation |
| title_fullStr |
Learning to repair plans and schedules using a relational (deictic) representation |
| title_full_unstemmed |
Learning to repair plans and schedules using a relational (deictic) representation |
| title_sort |
Learning to repair plans and schedules using a relational (deictic) representation |
| dc.creator.none.fl_str_mv |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
| author |
Palombarini, Jorge Andrés |
| author_facet |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
| author_role |
author |
| author2 |
Martínez, Ernesto Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Batch plants Rescheduling Reinforcement Learning Automated planning Artificial intelligence Relational modeling Rescheduling |
| topic |
Batch plants Rescheduling Reinforcement Learning Automated planning Artificial intelligence Relational modeling Rescheduling |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling. Fil: Palombarini, Jorge Andrés. Universidad Tecnológica Nacional; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
| description |
Unplanned and abnormal events may have a significant impact on the feasibility of plans and schedules which requires to repair them 'on-the-fly' to guarantee due date compliance of orders-in-progress and negotiating delivery conditions for new orders. In this work, a repair-based rescheduling approach based on the integration of intensive simulations with logical and relational reinforcement learning is proposed. Based on a relational (deictic) representation of schedule states, a number of repair operators have been designed to guide the search towards a goal state. The knowledge generated via simulation is encoded in a relational regression tree for the Q-value function defining the utility of applying a given repair operator at a given schedule state. A prototype implementation in Prolog language is discussed using a representative example of three batch extruders processing orders for four different products. The learning curve for the problem of inserting a new order vividly illustrates the advantages of logical and relational learning in rescheduling. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70283 Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-427 0104-6632 1678-4383 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/70283 |
| identifier_str_mv |
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Learning to repair plans and schedules using a relational (deictic) representation; Brazilian Society of Chemical Engineering; Brazilian Journal of Chemical Engineering; 27; 3; 9-2010; 413-427 0104-6632 1678-4383 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1590/S0104-66322010000300006 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
| publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597716515422208 |
| score |
12.976206 |