Robust clustering of banks in Argentina
- Autores
- Díaz, Margarita; Vargas, José M.; García, Fernando
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Díaz, Margarita. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.
Fil: Vargas, José M. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.
Fil: Vargas, José M. Universidad Nacional de Villa María. Instituto de Ciencias Básicas y Aplicadas. Departamento de Matemáticas; Argentina.
Fil: García, Fernando. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
The purpose of this paper is to classify and characterize 64 banks, active as of 2010 inArgentina, by means of robust techniques used on information gathered during the period 2001-2010. Based on the strategy criteria established in [Wang (2007)] and [Werbin (2010)], seven variables were selected. In agreement with bank theory, four “natural” clusters were obtained, named “Personal”, “Commercial”, “Typical and “Other banks”, using robust K-means clustering as implemented in R statistical language through the function [Kondo (2011)] detecting six outliers in the process. In order to characterize each group, projection pursuit based robust principal component analysis, [Croux (2005)], was conducted on each cluster revealing approximately a similar component structure explained by three components in excess of 80%, granting a common principal components analysis as in [Boente (2002)]. This allowed us to identify three variables which suffice for grouping and characterizing each cluster. Boente influence measures were used to detect extreme cases in the common principal components analysis.
Fil: Díaz, Margarita. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.
Fil: Vargas, José M. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.
Fil: Vargas, José M. Universidad Nacional de Villa María. Instituto de Ciencias Básicas y Aplicadas. Departamento de Matemáticas; Argentina.
Fil: García, Fernando. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.
Otras Economía y Negocios - Materia
-
Robust clustering
Projection pursuit
Common principal
Components influence measures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/28045
Ver los metadatos del registro completo
id |
RDUUNC_76a7c891718344f816a8eca593bb1e0c |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/28045 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Robust clustering of banks in ArgentinaDíaz, MargaritaVargas, José M.García, FernandoRobust clusteringProjection pursuitCommon principalComponents influence measuresFil: Díaz, Margarita. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.Fil: Vargas, José M. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.Fil: Vargas, José M. Universidad Nacional de Villa María. Instituto de Ciencias Básicas y Aplicadas. Departamento de Matemáticas; Argentina.Fil: García, Fernando. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.The purpose of this paper is to classify and characterize 64 banks, active as of 2010 inArgentina, by means of robust techniques used on information gathered during the period 2001-2010. Based on the strategy criteria established in [Wang (2007)] and [Werbin (2010)], seven variables were selected. In agreement with bank theory, four “natural” clusters were obtained, named “Personal”, “Commercial”, “Typical and “Other banks”, using robust K-means clustering as implemented in R statistical language through the function [Kondo (2011)] detecting six outliers in the process. In order to characterize each group, projection pursuit based robust principal component analysis, [Croux (2005)], was conducted on each cluster revealing approximately a similar component structure explained by three components in excess of 80%, granting a common principal components analysis as in [Boente (2002)]. This allowed us to identify three variables which suffice for grouping and characterizing each cluster. Boente influence measures were used to detect extreme cases in the common principal components analysis.Fil: Díaz, Margarita. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.Fil: Vargas, José M. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina.Fil: Vargas, José M. Universidad Nacional de Villa María. Instituto de Ciencias Básicas y Aplicadas. Departamento de Matemáticas; Argentina.Fil: García, Fernando. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Otras Economía y Negocios2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/11086/28045enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:41:35Zoai:rdu.unc.edu.ar:11086/28045Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:41:36.272Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Robust clustering of banks in Argentina |
title |
Robust clustering of banks in Argentina |
spellingShingle |
Robust clustering of banks in Argentina Díaz, Margarita Robust clustering Projection pursuit Common principal Components influence measures |
title_short |
Robust clustering of banks in Argentina |
title_full |
Robust clustering of banks in Argentina |
title_fullStr |
Robust clustering of banks in Argentina |
title_full_unstemmed |
Robust clustering of banks in Argentina |
title_sort |
Robust clustering of banks in Argentina |
dc.creator.none.fl_str_mv |
Díaz, Margarita Vargas, José M. García, Fernando |
author |
Díaz, Margarita |
author_facet |
Díaz, Margarita Vargas, José M. García, Fernando |
author_role |
author |
author2 |
Vargas, José M. García, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Robust clustering Projection pursuit Common principal Components influence measures |
topic |
Robust clustering Projection pursuit Common principal Components influence measures |
dc.description.none.fl_txt_mv |
Fil: Díaz, Margarita. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina. Fil: Vargas, José M. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina. Fil: Vargas, José M. Universidad Nacional de Villa María. Instituto de Ciencias Básicas y Aplicadas. Departamento de Matemáticas; Argentina. Fil: García, Fernando. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. The purpose of this paper is to classify and characterize 64 banks, active as of 2010 inArgentina, by means of robust techniques used on information gathered during the period 2001-2010. Based on the strategy criteria established in [Wang (2007)] and [Werbin (2010)], seven variables were selected. In agreement with bank theory, four “natural” clusters were obtained, named “Personal”, “Commercial”, “Typical and “Other banks”, using robust K-means clustering as implemented in R statistical language through the function [Kondo (2011)] detecting six outliers in the process. In order to characterize each group, projection pursuit based robust principal component analysis, [Croux (2005)], was conducted on each cluster revealing approximately a similar component structure explained by three components in excess of 80%, granting a common principal components analysis as in [Boente (2002)]. This allowed us to identify three variables which suffice for grouping and characterizing each cluster. Boente influence measures were used to detect extreme cases in the common principal components analysis. Fil: Díaz, Margarita. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina. Fil: Vargas, José M. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina. Fil: Vargas, José M. Universidad Nacional de Villa María. Instituto de Ciencias Básicas y Aplicadas. Departamento de Matemáticas; Argentina. Fil: García, Fernando. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina. Otras Economía y Negocios |
description |
Fil: Díaz, Margarita. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística; Argentina. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11086/28045 |
url |
http://hdl.handle.net/11086/28045 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618906065436672 |
score |
13.070432 |