General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study
- Autores
- Boente, G.; Pires, A.M.; Rodrigues, I.M.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The common principal components (CPC) model for several groups of multivariate observations assumes equal principal axes but possibly different variances along these axes among the groups. Under a CPCs model, generalized projection-pursuit estimators are defined by using score functions on the dispersion measure considered. Their partial influence functions are obtained and asymptotic variances are derived from them. When the score function is taken equal to the logarithm, it is shown that, under a proportionality model, the eigenvector estimators are optimal in the sense of minimizing the asymptotic variance of the eigenvectors, for a given scale measure. © 2004 Elsevier Inc. All rights reserved.
Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Multivariate Anal. 2006;97(1):124-147
- Materia
-
Asymptotic variances
Common principal components
Partial influence function
Projection-pursuit
Robust estimation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0047259X_v97_n1_p124_Boente
Ver los metadatos del registro completo
id |
BDUBAFCEN_aa93938242f7c69ab407ab46922211e6 |
---|---|
oai_identifier_str |
paperaa:paper_0047259X_v97_n1_p124_Boente |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo studyBoente, G.Pires, A.M.Rodrigues, I.M.Asymptotic variancesCommon principal componentsPartial influence functionProjection-pursuitRobust estimationThe common principal components (CPC) model for several groups of multivariate observations assumes equal principal axes but possibly different variances along these axes among the groups. Under a CPCs model, generalized projection-pursuit estimators are defined by using score functions on the dispersion measure considered. Their partial influence functions are obtained and asymptotic variances are derived from them. When the score function is taken equal to the logarithm, it is shown that, under a proportionality model, the eigenvector estimators are optimal in the sense of minimizing the asymptotic variance of the eigenvectors, for a given scale measure. © 2004 Elsevier Inc. All rights reserved.Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0047259X_v97_n1_p124_BoenteJ. Multivariate Anal. 2006;97(1):124-147reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:20Zpaperaa:paper_0047259X_v97_n1_p124_BoenteInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:22.578Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study |
title |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study |
spellingShingle |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study Boente, G. Asymptotic variances Common principal components Partial influence function Projection-pursuit Robust estimation |
title_short |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study |
title_full |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study |
title_fullStr |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study |
title_full_unstemmed |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study |
title_sort |
General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study |
dc.creator.none.fl_str_mv |
Boente, G. Pires, A.M. Rodrigues, I.M. |
author |
Boente, G. |
author_facet |
Boente, G. Pires, A.M. Rodrigues, I.M. |
author_role |
author |
author2 |
Pires, A.M. Rodrigues, I.M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Asymptotic variances Common principal components Partial influence function Projection-pursuit Robust estimation |
topic |
Asymptotic variances Common principal components Partial influence function Projection-pursuit Robust estimation |
dc.description.none.fl_txt_mv |
The common principal components (CPC) model for several groups of multivariate observations assumes equal principal axes but possibly different variances along these axes among the groups. Under a CPCs model, generalized projection-pursuit estimators are defined by using score functions on the dispersion measure considered. Their partial influence functions are obtained and asymptotic variances are derived from them. When the score function is taken equal to the logarithm, it is shown that, under a proportionality model, the eigenvector estimators are optimal in the sense of minimizing the asymptotic variance of the eigenvectors, for a given scale measure. © 2004 Elsevier Inc. All rights reserved. Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The common principal components (CPC) model for several groups of multivariate observations assumes equal principal axes but possibly different variances along these axes among the groups. Under a CPCs model, generalized projection-pursuit estimators are defined by using score functions on the dispersion measure considered. Their partial influence functions are obtained and asymptotic variances are derived from them. When the score function is taken equal to the logarithm, it is shown that, under a proportionality model, the eigenvector estimators are optimal in the sense of minimizing the asymptotic variance of the eigenvectors, for a given scale measure. © 2004 Elsevier Inc. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0047259X_v97_n1_p124_Boente |
url |
http://hdl.handle.net/20.500.12110/paper_0047259X_v97_n1_p124_Boente |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Multivariate Anal. 2006;97(1):124-147 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142850164588544 |
score |
12.712165 |