Nonpositively curved metric in the positive cone of a finite von Neumann algebra

Autores
Andruchow, Esteban; Larotonda, Gabriel Andrés
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the metric geometry of the space Σ of positive invertible elements of a von Neumann algebra. A with a finite, normal and faithful tracial state T. The trace induces an incomplete Riemannian  metric _a=T(ya^{-1}xa^{-1}), and though the techniques involved are quite different, the situation here resembles in many relevant aspects that of the n x n matrices when they are regarded as a symmetric space. For instance we prove that geodesics are the shortest paths for the metric induced, and that the geodesic distance is a convex function; we give an intrinsic (algebraic) characterization of the geodesically convex submanifolds M of Σ, and under suitable hypothesis we prove a factorization theorem for elements in the algebra that resembles the Iwasawa decomposition for matrices. This factorization is obtained via a nonlinear orthogonal projection π_M: Σ → M, a map which turns out to be contractive for the geodesic distance.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
FINITE VON NEUMANN ALGEBRA
NONPOSITIVE CURVATURE
POSITIVE CONE
SHORT GEODESIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/104669

id CONICETDig_c6cd45626aa6a4a09d308f884c62a185
oai_identifier_str oai:ri.conicet.gov.ar:11336/104669
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonpositively curved metric in the positive cone of a finite von Neumann algebraAndruchow, EstebanLarotonda, Gabriel AndrésFINITE VON NEUMANN ALGEBRANONPOSITIVE CURVATUREPOSITIVE CONESHORT GEODESIChttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study the metric geometry of the space Σ of positive invertible elements of a von Neumann algebra. A with a finite, normal and faithful tracial state T. The trace induces an incomplete Riemannian  metric _a=T(ya^{-1}xa^{-1}), and though the techniques involved are quite different, the situation here resembles in many relevant aspects that of the n x n matrices when they are regarded as a symmetric space. For instance we prove that geodesics are the shortest paths for the metric induced, and that the geodesic distance is a convex function; we give an intrinsic (algebraic) characterization of the geodesically convex submanifolds M of Σ, and under suitable hypothesis we prove a factorization theorem for elements in the algebra that resembles the Iwasawa decomposition for matrices. This factorization is obtained via a nonlinear orthogonal projection π_M: Σ → M, a map which turns out to be contractive for the geodesic distance.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaOxford University Press2006-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104669Andruchow, Esteban; Larotonda, Gabriel Andrés; Nonpositively curved metric in the positive cone of a finite von Neumann algebra; Oxford University Press; Journal of the London Mathematical Society; 74; 1; 8-2006; 205-2180024-6107CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/S0024610706022848info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0808.1774info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610706022848info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:02Zoai:ri.conicet.gov.ar:11336/104669instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:02.998CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonpositively curved metric in the positive cone of a finite von Neumann algebra
title Nonpositively curved metric in the positive cone of a finite von Neumann algebra
spellingShingle Nonpositively curved metric in the positive cone of a finite von Neumann algebra
Andruchow, Esteban
FINITE VON NEUMANN ALGEBRA
NONPOSITIVE CURVATURE
POSITIVE CONE
SHORT GEODESIC
title_short Nonpositively curved metric in the positive cone of a finite von Neumann algebra
title_full Nonpositively curved metric in the positive cone of a finite von Neumann algebra
title_fullStr Nonpositively curved metric in the positive cone of a finite von Neumann algebra
title_full_unstemmed Nonpositively curved metric in the positive cone of a finite von Neumann algebra
title_sort Nonpositively curved metric in the positive cone of a finite von Neumann algebra
dc.creator.none.fl_str_mv Andruchow, Esteban
Larotonda, Gabriel Andrés
author Andruchow, Esteban
author_facet Andruchow, Esteban
Larotonda, Gabriel Andrés
author_role author
author2 Larotonda, Gabriel Andrés
author2_role author
dc.subject.none.fl_str_mv FINITE VON NEUMANN ALGEBRA
NONPOSITIVE CURVATURE
POSITIVE CONE
SHORT GEODESIC
topic FINITE VON NEUMANN ALGEBRA
NONPOSITIVE CURVATURE
POSITIVE CONE
SHORT GEODESIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study the metric geometry of the space Σ of positive invertible elements of a von Neumann algebra. A with a finite, normal and faithful tracial state T. The trace induces an incomplete Riemannian  metric _a=T(ya^{-1}xa^{-1}), and though the techniques involved are quite different, the situation here resembles in many relevant aspects that of the n x n matrices when they are regarded as a symmetric space. For instance we prove that geodesics are the shortest paths for the metric induced, and that the geodesic distance is a convex function; we give an intrinsic (algebraic) characterization of the geodesically convex submanifolds M of Σ, and under suitable hypothesis we prove a factorization theorem for elements in the algebra that resembles the Iwasawa decomposition for matrices. This factorization is obtained via a nonlinear orthogonal projection π_M: Σ → M, a map which turns out to be contractive for the geodesic distance.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description In this paper we study the metric geometry of the space Σ of positive invertible elements of a von Neumann algebra. A with a finite, normal and faithful tracial state T. The trace induces an incomplete Riemannian  metric _a=T(ya^{-1}xa^{-1}), and though the techniques involved are quite different, the situation here resembles in many relevant aspects that of the n x n matrices when they are regarded as a symmetric space. For instance we prove that geodesics are the shortest paths for the metric induced, and that the geodesic distance is a convex function; we give an intrinsic (algebraic) characterization of the geodesically convex submanifolds M of Σ, and under suitable hypothesis we prove a factorization theorem for elements in the algebra that resembles the Iwasawa decomposition for matrices. This factorization is obtained via a nonlinear orthogonal projection π_M: Σ → M, a map which turns out to be contractive for the geodesic distance.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/104669
Andruchow, Esteban; Larotonda, Gabriel Andrés; Nonpositively curved metric in the positive cone of a finite von Neumann algebra; Oxford University Press; Journal of the London Mathematical Society; 74; 1; 8-2006; 205-218
0024-6107
CONICET Digital
CONICET
url http://hdl.handle.net/11336/104669
identifier_str_mv Andruchow, Esteban; Larotonda, Gabriel Andrés; Nonpositively curved metric in the positive cone of a finite von Neumann algebra; Oxford University Press; Journal of the London Mathematical Society; 74; 1; 8-2006; 205-218
0024-6107
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1112/S0024610706022848
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0808.1774
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610706022848
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269009717755904
score 13.13397