Simulation of quasi-stationary distributions on countable spaces
- Autores
- Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina - Materia
-
Quasi-Stationary Distributions
Simulation
Fleming-Viot
Particle Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14839
Ver los metadatos del registro completo
id |
CONICETDig_c9b7ddabeeffc16f4b55e371683136b0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14839 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulation of quasi-stationary distributions on countable spacesGroisman, Pablo JoseJonckheere, Matthieu Thimothy SamsonQuasi-Stationary DistributionsSimulationFleming-ViotParticle Systemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results.Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; ArgentinaMoscow State University2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14839Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Simulation of quasi-stationary distributions on countable spaces; Moscow State University; Markov Processes And Related Fields; 19; 3; 5-2013; 521-5421024-2953enginfo:eu-repo/semantics/altIdentifier/url/http://math-mprf.org/journal/articles/id1307/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:40Zoai:ri.conicet.gov.ar:11336/14839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:40.524CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulation of quasi-stationary distributions on countable spaces |
title |
Simulation of quasi-stationary distributions on countable spaces |
spellingShingle |
Simulation of quasi-stationary distributions on countable spaces Groisman, Pablo Jose Quasi-Stationary Distributions Simulation Fleming-Viot Particle Systems |
title_short |
Simulation of quasi-stationary distributions on countable spaces |
title_full |
Simulation of quasi-stationary distributions on countable spaces |
title_fullStr |
Simulation of quasi-stationary distributions on countable spaces |
title_full_unstemmed |
Simulation of quasi-stationary distributions on countable spaces |
title_sort |
Simulation of quasi-stationary distributions on countable spaces |
dc.creator.none.fl_str_mv |
Groisman, Pablo Jose Jonckheere, Matthieu Thimothy Samson |
author |
Groisman, Pablo Jose |
author_facet |
Groisman, Pablo Jose Jonckheere, Matthieu Thimothy Samson |
author_role |
author |
author2 |
Jonckheere, Matthieu Thimothy Samson |
author2_role |
author |
dc.subject.none.fl_str_mv |
Quasi-Stationary Distributions Simulation Fleming-Viot Particle Systems |
topic |
Quasi-Stationary Distributions Simulation Fleming-Viot Particle Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results. Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina |
description |
Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14839 Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Simulation of quasi-stationary distributions on countable spaces; Moscow State University; Markov Processes And Related Fields; 19; 3; 5-2013; 521-542 1024-2953 |
url |
http://hdl.handle.net/11336/14839 |
identifier_str_mv |
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Simulation of quasi-stationary distributions on countable spaces; Moscow State University; Markov Processes And Related Fields; 19; 3; 5-2013; 521-542 1024-2953 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://math-mprf.org/journal/articles/id1307/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Moscow State University |
publisher.none.fl_str_mv |
Moscow State University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980846352465920 |
score |
13.004268 |