Simulation of quasi-stationary distributions on countable spaces

Autores
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina
Materia
Quasi-Stationary Distributions
Simulation
Fleming-Viot
Particle Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14839

id CONICETDig_c9b7ddabeeffc16f4b55e371683136b0
oai_identifier_str oai:ri.conicet.gov.ar:11336/14839
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulation of quasi-stationary distributions on countable spacesGroisman, Pablo JoseJonckheere, Matthieu Thimothy SamsonQuasi-Stationary DistributionsSimulationFleming-ViotParticle Systemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results.Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; ArgentinaMoscow State University2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14839Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Simulation of quasi-stationary distributions on countable spaces; Moscow State University; Markov Processes And Related Fields; 19; 3; 5-2013; 521-5421024-2953enginfo:eu-repo/semantics/altIdentifier/url/http://math-mprf.org/journal/articles/id1307/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:40Zoai:ri.conicet.gov.ar:11336/14839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:40.524CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulation of quasi-stationary distributions on countable spaces
title Simulation of quasi-stationary distributions on countable spaces
spellingShingle Simulation of quasi-stationary distributions on countable spaces
Groisman, Pablo Jose
Quasi-Stationary Distributions
Simulation
Fleming-Viot
Particle Systems
title_short Simulation of quasi-stationary distributions on countable spaces
title_full Simulation of quasi-stationary distributions on countable spaces
title_fullStr Simulation of quasi-stationary distributions on countable spaces
title_full_unstemmed Simulation of quasi-stationary distributions on countable spaces
title_sort Simulation of quasi-stationary distributions on countable spaces
dc.creator.none.fl_str_mv Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
author Groisman, Pablo Jose
author_facet Groisman, Pablo Jose
Jonckheere, Matthieu Thimothy Samson
author_role author
author2 Jonckheere, Matthieu Thimothy Samson
author2_role author
dc.subject.none.fl_str_mv Quasi-Stationary Distributions
Simulation
Fleming-Viot
Particle Systems
topic Quasi-Stationary Distributions
Simulation
Fleming-Viot
Particle Systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina
description Quasi-stationary distributions (QSD) have been widely studied since the pioneering work of Kolmogorov (1938), Yaglom (1947) and Sevastyanov (1951). They appear as a natural object when considering Markov processes that are certainly absorbed since they are invariant for the evolution of the distribution of the process conditioned on not being absorbed. They hence appropriately describe the state of the process at large times for non absorbed paths. Unlike invariant distributions for Markov processes, QSD are solutions of a non-linear equation and there can be 0, 1 or an infinity of them. Also, they cannot be obtained as Cesaro limits of Markovian dynamics. These facts make the computation of QSDs a nontrivial matter. We review different approximation methods for QSD that are useful for simulation purposes, mainly focused on Fleming - Viot dynamics. We also give some alternative proofs and extensions of known results.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14839
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Simulation of quasi-stationary distributions on countable spaces; Moscow State University; Markov Processes And Related Fields; 19; 3; 5-2013; 521-542
1024-2953
url http://hdl.handle.net/11336/14839
identifier_str_mv Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Simulation of quasi-stationary distributions on countable spaces; Moscow State University; Markov Processes And Related Fields; 19; 3; 5-2013; 521-542
1024-2953
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://math-mprf.org/journal/articles/id1307/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Moscow State University
publisher.none.fl_str_mv Moscow State University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980846352465920
score 13.004268