Front propagation and quasi-stationary distributions for one-dimensional Lévy processes
- Autores
- Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We jointly investigate the existence of quasi-stationary distributions for one dimensional Lévy processes and the existence of traveling waves for the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation associated with the same motion. Using probabilistic ideas developed by S. Harris, we show that the existence of a traveling wave for the F-KPP equation associated with a centered Lévy processes that branches at rate r and travels at velocity c is equivalent to the existence of a quasi-stationary distribution for a Lévy process with the same movement but drifted by −c and killed at zero, with mean absorption time 1/r. This also extends the known existence conditions in both contexts. As it is discussed in [12], this is not just a coincidence but the consequence of a relation between these two phenomena.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
QUASI-STATIONARY MEASURES
TRAVELLING WAVES
BRANCHING LÉVY PROCESSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55507
Ver los metadatos del registro completo
id |
CONICETDig_000408044a86c5ff1ea3dd99681fcd7d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55507 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processesGroisman, Pablo JoseJonckheere, Matthieu Thimothy SamsonQUASI-STATIONARY MEASURESTRAVELLING WAVESBRANCHING LÉVY PROCESSEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We jointly investigate the existence of quasi-stationary distributions for one dimensional Lévy processes and the existence of traveling waves for the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation associated with the same motion. Using probabilistic ideas developed by S. Harris, we show that the existence of a traveling wave for the F-KPP equation associated with a centered Lévy processes that branches at rate r and travels at velocity c is equivalent to the existence of a quasi-stationary distribution for a Lévy process with the same movement but drifted by −c and killed at zero, with mean absorption time 1/r. This also extends the known existence conditions in both contexts. As it is discussed in [12], this is not just a coincidence but the consequence of a relation between these two phenomena.Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaUniv Washington2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55507Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Front propagation and quasi-stationary distributions for one-dimensional Lévy processes; Univ Washington; Electronic Communications In Probability; 23; 93; 9-2016; 1-102331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1609.09338info:eu-repo/semantics/altIdentifier/doi/10.1214/18-ECP199info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ecp/1544843116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:47Zoai:ri.conicet.gov.ar:11336/55507instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:47.985CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes |
title |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes |
spellingShingle |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes Groisman, Pablo Jose QUASI-STATIONARY MEASURES TRAVELLING WAVES BRANCHING LÉVY PROCESSES |
title_short |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes |
title_full |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes |
title_fullStr |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes |
title_full_unstemmed |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes |
title_sort |
Front propagation and quasi-stationary distributions for one-dimensional Lévy processes |
dc.creator.none.fl_str_mv |
Groisman, Pablo Jose Jonckheere, Matthieu Thimothy Samson |
author |
Groisman, Pablo Jose |
author_facet |
Groisman, Pablo Jose Jonckheere, Matthieu Thimothy Samson |
author_role |
author |
author2 |
Jonckheere, Matthieu Thimothy Samson |
author2_role |
author |
dc.subject.none.fl_str_mv |
QUASI-STATIONARY MEASURES TRAVELLING WAVES BRANCHING LÉVY PROCESSES |
topic |
QUASI-STATIONARY MEASURES TRAVELLING WAVES BRANCHING LÉVY PROCESSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We jointly investigate the existence of quasi-stationary distributions for one dimensional Lévy processes and the existence of traveling waves for the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation associated with the same motion. Using probabilistic ideas developed by S. Harris, we show that the existence of a traveling wave for the F-KPP equation associated with a centered Lévy processes that branches at rate r and travels at velocity c is equivalent to the existence of a quasi-stationary distribution for a Lévy process with the same movement but drifted by −c and killed at zero, with mean absorption time 1/r. This also extends the known existence conditions in both contexts. As it is discussed in [12], this is not just a coincidence but the consequence of a relation between these two phenomena. Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
We jointly investigate the existence of quasi-stationary distributions for one dimensional Lévy processes and the existence of traveling waves for the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation associated with the same motion. Using probabilistic ideas developed by S. Harris, we show that the existence of a traveling wave for the F-KPP equation associated with a centered Lévy processes that branches at rate r and travels at velocity c is equivalent to the existence of a quasi-stationary distribution for a Lévy process with the same movement but drifted by −c and killed at zero, with mean absorption time 1/r. This also extends the known existence conditions in both contexts. As it is discussed in [12], this is not just a coincidence but the consequence of a relation between these two phenomena. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55507 Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Front propagation and quasi-stationary distributions for one-dimensional Lévy processes; Univ Washington; Electronic Communications In Probability; 23; 93; 9-2016; 1-10 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55507 |
identifier_str_mv |
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Front propagation and quasi-stationary distributions for one-dimensional Lévy processes; Univ Washington; Electronic Communications In Probability; 23; 93; 9-2016; 1-10 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1609.09338 info:eu-repo/semantics/altIdentifier/doi/10.1214/18-ECP199 info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.ecp/1544843116 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Univ Washington |
publisher.none.fl_str_mv |
Univ Washington |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613259082072064 |
score |
13.070432 |