Quasi-stationary distributions and Fleming-Viot processes in finite spaces
- Autores
- Asselah, Amine; Ferrari, Pablo Augusto; Groisman, Pablo Jose
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Consider a continuous-time Markov process with transition rates matrix Q in the state space Λ ⋃ {0}. In the associated Fleming-Viot process N particles evolve independently in Λ with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Λ is finite, we show that the empirical distribution of the particles at a fixed time converges as N → ∞ to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N → ∞ to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1 / N.
Fil: Asselah, Amine. Universite de Paris; Francia
Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidade de Sao Paulo; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Fleming Viot Processes
Quasi stationary distributions
Markov processes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14929
Ver los metadatos del registro completo
id |
CONICETDig_c87002cb44d696cbcad6c338e71e5f3f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14929 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quasi-stationary distributions and Fleming-Viot processes in finite spacesAsselah, AmineFerrari, Pablo AugustoGroisman, Pablo JoseFleming Viot ProcessesQuasi stationary distributionsMarkov processeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Consider a continuous-time Markov process with transition rates matrix Q in the state space Λ ⋃ {0}. In the associated Fleming-Viot process N particles evolve independently in Λ with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Λ is finite, we show that the empirical distribution of the particles at a fixed time converges as N → ∞ to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N → ∞ to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1 / N.Fil: Asselah, Amine. Universite de Paris; FranciaFil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidade de Sao Paulo; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaApplied Probability Trust2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14929Asselah, Amine; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Quasi-stationary distributions and Fleming-Viot processes in finite spaces; Applied Probability Trust; Journal Of Applied Probability; 48; 2; 6-2011; 322-3320021-9002enginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-applied-probability/article/quasistationary-distributions-and-flemingviot-processes-in-finite-spaces/5B4539097B46FACC95040F4D2A23CA7B#info:eu-repo/semantics/altIdentifier/doi/10.1017/S0021900200007907info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:42Zoai:ri.conicet.gov.ar:11336/14929instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:42.811CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces |
title |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces |
spellingShingle |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces Asselah, Amine Fleming Viot Processes Quasi stationary distributions Markov processes |
title_short |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces |
title_full |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces |
title_fullStr |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces |
title_full_unstemmed |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces |
title_sort |
Quasi-stationary distributions and Fleming-Viot processes in finite spaces |
dc.creator.none.fl_str_mv |
Asselah, Amine Ferrari, Pablo Augusto Groisman, Pablo Jose |
author |
Asselah, Amine |
author_facet |
Asselah, Amine Ferrari, Pablo Augusto Groisman, Pablo Jose |
author_role |
author |
author2 |
Ferrari, Pablo Augusto Groisman, Pablo Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Fleming Viot Processes Quasi stationary distributions Markov processes |
topic |
Fleming Viot Processes Quasi stationary distributions Markov processes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Consider a continuous-time Markov process with transition rates matrix Q in the state space Λ ⋃ {0}. In the associated Fleming-Viot process N particles evolve independently in Λ with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Λ is finite, we show that the empirical distribution of the particles at a fixed time converges as N → ∞ to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N → ∞ to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1 / N. Fil: Asselah, Amine. Universite de Paris; Francia Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidade de Sao Paulo; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Consider a continuous-time Markov process with transition rates matrix Q in the state space Λ ⋃ {0}. In the associated Fleming-Viot process N particles evolve independently in Λ with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Λ is finite, we show that the empirical distribution of the particles at a fixed time converges as N → ∞ to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N → ∞ to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1 / N. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14929 Asselah, Amine; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Quasi-stationary distributions and Fleming-Viot processes in finite spaces; Applied Probability Trust; Journal Of Applied Probability; 48; 2; 6-2011; 322-332 0021-9002 |
url |
http://hdl.handle.net/11336/14929 |
identifier_str_mv |
Asselah, Amine; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Quasi-stationary distributions and Fleming-Viot processes in finite spaces; Applied Probability Trust; Journal Of Applied Probability; 48; 2; 6-2011; 322-332 0021-9002 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/journal-of-applied-probability/article/quasistationary-distributions-and-flemingviot-processes-in-finite-spaces/5B4539097B46FACC95040F4D2A23CA7B# info:eu-repo/semantics/altIdentifier/doi/10.1017/S0021900200007907 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Applied Probability Trust |
publisher.none.fl_str_mv |
Applied Probability Trust |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613748328759296 |
score |
13.070432 |