On normal operator logarithms
- Autores
- Chiumiento, Eduardo Hernan
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let X,Y be normal bounded operators on a Hilbert space such that e^X=e^Y. If the spectra of X and Y are contained in the strip S of the complex plane defined by |Im(z)|leq pi, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e^X=e^Y.
If X is an unbounded self-adjoint operator, which does not have (2k+1) pi, k in Z, as eigenvalues, and Y is normal with spectrum in S satisfying e^{iX}=e^Y, then Y in { e^{iX} }´´. We give alternative proofs and generalizations of results on normal operator exponentials proved by Ch. Schmoeger.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina - Materia
-
Exponential Map
Normal Operator
Spectral Theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3374
Ver los metadatos del registro completo
| id |
CONICETDig_c950e7d0e4de561a56297cbab86e401a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3374 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On normal operator logarithmsChiumiento, Eduardo HernanExponential MapNormal OperatorSpectral Theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let X,Y be normal bounded operators on a Hilbert space such that e^X=e^Y. If the spectra of X and Y are contained in the strip S of the complex plane defined by |Im(z)|leq pi, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e^X=e^Y. <br />If X is an unbounded self-adjoint operator, which does not have (2k+1) pi, k in Z, as eigenvalues, and Y is normal with spectrum in S satisfying e^{iX}=e^Y, then Y in { e^{iX} }´´. We give alternative proofs and generalizations of results on normal operator exponentials proved by Ch. Schmoeger.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaElsevier Science Inc2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3374Chiumiento, Eduardo Hernan; On normal operator logarithms; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 7-2013; 455-4620024-3795enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.03.026info:eu-repo/semantics/altIdentifier/url/http://www.journals.elsevier.com/linear-algebra-and-its-applications/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:03:23Zoai:ri.conicet.gov.ar:11336/3374instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:03:23.472CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On normal operator logarithms |
| title |
On normal operator logarithms |
| spellingShingle |
On normal operator logarithms Chiumiento, Eduardo Hernan Exponential Map Normal Operator Spectral Theorem |
| title_short |
On normal operator logarithms |
| title_full |
On normal operator logarithms |
| title_fullStr |
On normal operator logarithms |
| title_full_unstemmed |
On normal operator logarithms |
| title_sort |
On normal operator logarithms |
| dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernan |
| author |
Chiumiento, Eduardo Hernan |
| author_facet |
Chiumiento, Eduardo Hernan |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Exponential Map Normal Operator Spectral Theorem |
| topic |
Exponential Map Normal Operator Spectral Theorem |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let X,Y be normal bounded operators on a Hilbert space such that e^X=e^Y. If the spectra of X and Y are contained in the strip S of the complex plane defined by |Im(z)|leq pi, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e^X=e^Y. <br />If X is an unbounded self-adjoint operator, which does not have (2k+1) pi, k in Z, as eigenvalues, and Y is normal with spectrum in S satisfying e^{iX}=e^Y, then Y in { e^{iX} }´´. We give alternative proofs and generalizations of results on normal operator exponentials proved by Ch. Schmoeger. Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina |
| description |
Let X,Y be normal bounded operators on a Hilbert space such that e^X=e^Y. If the spectra of X and Y are contained in the strip S of the complex plane defined by |Im(z)|leq pi, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e^X=e^Y. <br />If X is an unbounded self-adjoint operator, which does not have (2k+1) pi, k in Z, as eigenvalues, and Y is normal with spectrum in S satisfying e^{iX}=e^Y, then Y in { e^{iX} }´´. We give alternative proofs and generalizations of results on normal operator exponentials proved by Ch. Schmoeger. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3374 Chiumiento, Eduardo Hernan; On normal operator logarithms; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 7-2013; 455-462 0024-3795 |
| url |
http://hdl.handle.net/11336/3374 |
| identifier_str_mv |
Chiumiento, Eduardo Hernan; On normal operator logarithms; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 7-2013; 455-462 0024-3795 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.03.026 info:eu-repo/semantics/altIdentifier/url/http://www.journals.elsevier.com/linear-algebra-and-its-applications/ |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
| publisher.none.fl_str_mv |
Elsevier Science Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782375562838016 |
| score |
12.982451 |