On normal operator logarithms
- Autores
- Chiumiento, Eduardo Hernán
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let X,Y be normal bounded operators on a Hilbert space such that e X=eY. If the spectra of X and Y are contained in the strip S of the complex plane defined by |I(z)|≤π, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e X=eY. If X is an unbounded self-adjoint operator, which does not have (2k+1)π,k∈ℤ, as eigenvalues, and Y is normal with spectrum in S satisfying eiX=eY, then Y∈{ e iX}″. We give alternative proofs and generalizations of results on normal operator exponentials proved by Schmoeger.
Facultad de Ciencias Exactas - Materia
-
Matemática
Exponential map
Normal operator
Spectral theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85121
Ver los metadatos del registro completo
| id |
SEDICI_a139dc47fe57d945f13f00a312a65331 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85121 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
On normal operator logarithmsChiumiento, Eduardo HernánMatemáticaExponential mapNormal operatorSpectral theoremLet X,Y be normal bounded operators on a Hilbert space such that e X=eY. If the spectra of X and Y are contained in the strip S of the complex plane defined by |I(z)|≤π, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e X=eY. If X is an unbounded self-adjoint operator, which does not have (2k+1)π,k∈ℤ, as eigenvalues, and Y is normal with spectrum in S satisfying eiX=eY, then Y∈{ e iX}″. We give alternative proofs and generalizations of results on normal operator exponentials proved by Schmoeger.Facultad de Ciencias Exactas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf455-462http://sedici.unlp.edu.ar/handle/10915/85121enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.03.026info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:40:48Zoai:sedici.unlp.edu.ar:10915/85121Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:40:48.84SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
On normal operator logarithms |
| title |
On normal operator logarithms |
| spellingShingle |
On normal operator logarithms Chiumiento, Eduardo Hernán Matemática Exponential map Normal operator Spectral theorem |
| title_short |
On normal operator logarithms |
| title_full |
On normal operator logarithms |
| title_fullStr |
On normal operator logarithms |
| title_full_unstemmed |
On normal operator logarithms |
| title_sort |
On normal operator logarithms |
| dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernán |
| author |
Chiumiento, Eduardo Hernán |
| author_facet |
Chiumiento, Eduardo Hernán |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Matemática Exponential map Normal operator Spectral theorem |
| topic |
Matemática Exponential map Normal operator Spectral theorem |
| dc.description.none.fl_txt_mv |
Let X,Y be normal bounded operators on a Hilbert space such that e X=eY. If the spectra of X and Y are contained in the strip S of the complex plane defined by |I(z)|≤π, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e X=eY. If X is an unbounded self-adjoint operator, which does not have (2k+1)π,k∈ℤ, as eigenvalues, and Y is normal with spectrum in S satisfying eiX=eY, then Y∈{ e iX}″. We give alternative proofs and generalizations of results on normal operator exponentials proved by Schmoeger. Facultad de Ciencias Exactas |
| description |
Let X,Y be normal bounded operators on a Hilbert space such that e X=eY. If the spectra of X and Y are contained in the strip S of the complex plane defined by |I(z)|≤π, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e X=eY. If X is an unbounded self-adjoint operator, which does not have (2k+1)π,k∈ℤ, as eigenvalues, and Y is normal with spectrum in S satisfying eiX=eY, then Y∈{ e iX}″. We give alternative proofs and generalizations of results on normal operator exponentials proved by Schmoeger. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85121 |
| url |
http://sedici.unlp.edu.ar/handle/10915/85121 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0024-3795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.03.026 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 455-462 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605491095142400 |
| score |
13.24909 |