Norm inequalities in operator ideals
- Autores
- Larotonda, Gabriel Andrés
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Norm inequality
Operator ideal
Unitarily invariant norm
Weierstrass factorization theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19464
Ver los metadatos del registro completo
id |
CONICETDig_f2b1ef19daf49a9d5c634afb1a09557f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19464 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Norm inequalities in operator idealsLarotonda, Gabriel AndrésNorm inequalityOperator idealUnitarily invariant normWeierstrass factorization theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19464Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-32280022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002212360800267Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2008.06.028info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2275info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:04Zoai:ri.conicet.gov.ar:11336/19464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:04.638CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Norm inequalities in operator ideals |
title |
Norm inequalities in operator ideals |
spellingShingle |
Norm inequalities in operator ideals Larotonda, Gabriel Andrés Norm inequality Operator ideal Unitarily invariant norm Weierstrass factorization theorem |
title_short |
Norm inequalities in operator ideals |
title_full |
Norm inequalities in operator ideals |
title_fullStr |
Norm inequalities in operator ideals |
title_full_unstemmed |
Norm inequalities in operator ideals |
title_sort |
Norm inequalities in operator ideals |
dc.creator.none.fl_str_mv |
Larotonda, Gabriel Andrés |
author |
Larotonda, Gabriel Andrés |
author_facet |
Larotonda, Gabriel Andrés |
author_role |
author |
dc.subject.none.fl_str_mv |
Norm inequality Operator ideal Unitarily invariant norm Weierstrass factorization theorem |
topic |
Norm inequality Operator ideal Unitarily invariant norm Weierstrass factorization theorem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra. Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19464 Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-3228 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19464 |
identifier_str_mv |
Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-3228 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002212360800267X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2008.06.028 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2275 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269674548494336 |
score |
13.13397 |