Norm inequalities in operator ideals

Autores
Larotonda, Gabriel Andrés
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Norm inequality
Operator ideal
Unitarily invariant norm
Weierstrass factorization theorem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19464

id CONICETDig_f2b1ef19daf49a9d5c634afb1a09557f
oai_identifier_str oai:ri.conicet.gov.ar:11336/19464
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Norm inequalities in operator idealsLarotonda, Gabriel AndrésNorm inequalityOperator idealUnitarily invariant normWeierstrass factorization theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19464Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-32280022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002212360800267Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2008.06.028info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2275info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:04Zoai:ri.conicet.gov.ar:11336/19464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:04.638CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Norm inequalities in operator ideals
title Norm inequalities in operator ideals
spellingShingle Norm inequalities in operator ideals
Larotonda, Gabriel Andrés
Norm inequality
Operator ideal
Unitarily invariant norm
Weierstrass factorization theorem
title_short Norm inequalities in operator ideals
title_full Norm inequalities in operator ideals
title_fullStr Norm inequalities in operator ideals
title_full_unstemmed Norm inequalities in operator ideals
title_sort Norm inequalities in operator ideals
dc.creator.none.fl_str_mv Larotonda, Gabriel Andrés
author Larotonda, Gabriel Andrés
author_facet Larotonda, Gabriel Andrés
author_role author
dc.subject.none.fl_str_mv Norm inequality
Operator ideal
Unitarily invariant norm
Weierstrass factorization theorem
topic Norm inequality
Operator ideal
Unitarily invariant norm
Weierstrass factorization theorem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description In this paper we introduce a new technique for proving norm inequalities in operator ideals with a unitarily invariant norm. Among the well-known inequalities which can be proved with this technique are the Löwner–Heinz inequality, inequalities relating various operator means and the Corach–Porta–Recht inequality. We prove two general inequalities and from them we derive several inequalities by specialization, many of them new. We also show how some inequalities, known to be valid for matrices or bounded operators, can be extended with this technique to normed ideals in C∗-algebras, in particular to the noncommutative Lp-spaces of a semi-finite von Neumann algebra.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19464
Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-3228
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19464
identifier_str_mv Larotonda, Gabriel Andrés; Norm inequalities in operator ideals; Elsevier; Journal Of Functional Analysis; 255; 11; 12-2008; 3208-3228
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002212360800267X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2008.06.028
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2275
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269674548494336
score 13.13397