Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis

Autores
Rossi, Jean Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz Diaz, Manuela; Sergent, Anne Sophie; Martinez Meier, Alejandro; Paques, Luc; Rozenberg, Philippe
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.
Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique; Francia
Fil: Nardin, Maxime. Institut National de la Recherche Agronomique; Francia
Fil: Godefroid, Martin. Institut National de la Recherche Agronomique; Francia
Fil: Ruiz Diaz, Manuela. Universidad Nacional de Misiones; Argentina
Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; Argentina
Fil: Paques, Luc. Institut National de la Recherche Agronomique; Francia
Fil: Rozenberg, Philippe. Institut National de la Recherche Agronomique; Francia
Materia
TREES
DENDROCHRONOLOGY
CLIMATE CHANGE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32462

id CONICETDig_c91ce4f9353269fb6529165f54f6a626
oai_identifier_str oai:ri.conicet.gov.ar:11336/32462
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic AnalysisRossi, Jean PierreNardin, MaximeGodefroid, MartinRuiz Diaz, ManuelaSergent, Anne SophieMartinez Meier, AlejandroPaques, LucRozenberg, PhilippeTREESDENDROCHRONOLOGYCLIMATE CHANGEhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique; FranciaFil: Nardin, Maxime. Institut National de la Recherche Agronomique; FranciaFil: Godefroid, Martin. Institut National de la Recherche Agronomique; FranciaFil: Ruiz Diaz, Manuela. Universidad Nacional de Misiones; ArgentinaFil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Paques, Luc. Institut National de la Recherche Agronomique; FranciaFil: Rozenberg, Philippe. Institut National de la Recherche Agronomique; FranciaPublic Library of Science2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32462Godefroid, Martin; Rossi, Jean Pierre; Sergent, Anne Sophie; Rozenberg, Philippe; Paques, Luc; Martinez Meier, Alejandro; et al.; Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis; Public Library of Science; Plos One; 9; 9; 9-2014; 1-13; e1083321932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0108332info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:19Zoai:ri.conicet.gov.ar:11336/32462instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:20.093CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
spellingShingle Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
Rossi, Jean Pierre
TREES
DENDROCHRONOLOGY
CLIMATE CHANGE
title_short Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_full Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_fullStr Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_full_unstemmed Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_sort Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
dc.creator.none.fl_str_mv Rossi, Jean Pierre
Nardin, Maxime
Godefroid, Martin
Ruiz Diaz, Manuela
Sergent, Anne Sophie
Martinez Meier, Alejandro
Paques, Luc
Rozenberg, Philippe
author Rossi, Jean Pierre
author_facet Rossi, Jean Pierre
Nardin, Maxime
Godefroid, Martin
Ruiz Diaz, Manuela
Sergent, Anne Sophie
Martinez Meier, Alejandro
Paques, Luc
Rozenberg, Philippe
author_role author
author2 Nardin, Maxime
Godefroid, Martin
Ruiz Diaz, Manuela
Sergent, Anne Sophie
Martinez Meier, Alejandro
Paques, Luc
Rozenberg, Philippe
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv TREES
DENDROCHRONOLOGY
CLIMATE CHANGE
topic TREES
DENDROCHRONOLOGY
CLIMATE CHANGE
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.
Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique; Francia
Fil: Nardin, Maxime. Institut National de la Recherche Agronomique; Francia
Fil: Godefroid, Martin. Institut National de la Recherche Agronomique; Francia
Fil: Ruiz Diaz, Manuela. Universidad Nacional de Misiones; Argentina
Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; Argentina
Fil: Paques, Luc. Institut National de la Recherche Agronomique; Francia
Fil: Rozenberg, Philippe. Institut National de la Recherche Agronomique; Francia
description Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32462
Godefroid, Martin; Rossi, Jean Pierre; Sergent, Anne Sophie; Rozenberg, Philippe; Paques, Luc; Martinez Meier, Alejandro; et al.; Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis; Public Library of Science; Plos One; 9; 9; 9-2014; 1-13; e108332
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32462
identifier_str_mv Godefroid, Martin; Rossi, Jean Pierre; Sergent, Anne Sophie; Rozenberg, Philippe; Paques, Luc; Martinez Meier, Alejandro; et al.; Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis; Public Library of Science; Plos One; 9; 9; 9-2014; 1-13; e108332
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0108332
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268851429965824
score 13.13397