Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
- Autores
- Rossi, Jean Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz Diaz, Manuela; Sergent, Anne Sophie; Martinez Meier, Alejandro; Paques, Luc; Rozenberg, Philippe
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.
Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique; Francia
Fil: Nardin, Maxime. Institut National de la Recherche Agronomique; Francia
Fil: Godefroid, Martin. Institut National de la Recherche Agronomique; Francia
Fil: Ruiz Diaz, Manuela. Universidad Nacional de Misiones; Argentina
Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; Argentina
Fil: Paques, Luc. Institut National de la Recherche Agronomique; Francia
Fil: Rozenberg, Philippe. Institut National de la Recherche Agronomique; Francia - Materia
-
TREES
DENDROCHRONOLOGY
CLIMATE CHANGE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32462
Ver los metadatos del registro completo
id |
CONICETDig_c91ce4f9353269fb6529165f54f6a626 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32462 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic AnalysisRossi, Jean PierreNardin, MaximeGodefroid, MartinRuiz Diaz, ManuelaSergent, Anne SophieMartinez Meier, AlejandroPaques, LucRozenberg, PhilippeTREESDENDROCHRONOLOGYCLIMATE CHANGEhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique; FranciaFil: Nardin, Maxime. Institut National de la Recherche Agronomique; FranciaFil: Godefroid, Martin. Institut National de la Recherche Agronomique; FranciaFil: Ruiz Diaz, Manuela. Universidad Nacional de Misiones; ArgentinaFil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Paques, Luc. Institut National de la Recherche Agronomique; FranciaFil: Rozenberg, Philippe. Institut National de la Recherche Agronomique; FranciaPublic Library of Science2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32462Godefroid, Martin; Rossi, Jean Pierre; Sergent, Anne Sophie; Rozenberg, Philippe; Paques, Luc; Martinez Meier, Alejandro; et al.; Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis; Public Library of Science; Plos One; 9; 9; 9-2014; 1-13; e1083321932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0108332info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:19Zoai:ri.conicet.gov.ar:11336/32462instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:20.093CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
spellingShingle |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis Rossi, Jean Pierre TREES DENDROCHRONOLOGY CLIMATE CHANGE |
title_short |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_full |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_fullStr |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_full_unstemmed |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_sort |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
dc.creator.none.fl_str_mv |
Rossi, Jean Pierre Nardin, Maxime Godefroid, Martin Ruiz Diaz, Manuela Sergent, Anne Sophie Martinez Meier, Alejandro Paques, Luc Rozenberg, Philippe |
author |
Rossi, Jean Pierre |
author_facet |
Rossi, Jean Pierre Nardin, Maxime Godefroid, Martin Ruiz Diaz, Manuela Sergent, Anne Sophie Martinez Meier, Alejandro Paques, Luc Rozenberg, Philippe |
author_role |
author |
author2 |
Nardin, Maxime Godefroid, Martin Ruiz Diaz, Manuela Sergent, Anne Sophie Martinez Meier, Alejandro Paques, Luc Rozenberg, Philippe |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
TREES DENDROCHRONOLOGY CLIMATE CHANGE |
topic |
TREES DENDROCHRONOLOGY CLIMATE CHANGE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets. Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique; Francia Fil: Nardin, Maxime. Institut National de la Recherche Agronomique; Francia Fil: Godefroid, Martin. Institut National de la Recherche Agronomique; Francia Fil: Ruiz Diaz, Manuela. Universidad Nacional de Misiones; Argentina Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; Argentina Fil: Paques, Luc. Institut National de la Recherche Agronomique; Francia Fil: Rozenberg, Philippe. Institut National de la Recherche Agronomique; Francia |
description |
Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32462 Godefroid, Martin; Rossi, Jean Pierre; Sergent, Anne Sophie; Rozenberg, Philippe; Paques, Luc; Martinez Meier, Alejandro; et al.; Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis; Public Library of Science; Plos One; 9; 9; 9-2014; 1-13; e108332 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32462 |
identifier_str_mv |
Godefroid, Martin; Rossi, Jean Pierre; Sergent, Anne Sophie; Rozenberg, Philippe; Paques, Luc; Martinez Meier, Alejandro; et al.; Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis; Public Library of Science; Plos One; 9; 9; 9-2014; 1-13; e108332 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0108332 info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268851429965824 |
score |
13.13397 |