Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
- Autores
- Rossi, Jean Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz Diaz, Manuela; Sergent, Anne Sophie; Martinez Meier, Alejandro; Paques, Luc; Rozenberg, Philippe
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.
EEA Bariloche
Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; Francia
Fil: Nardin, Maxime. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia
Fil: Godefroid, Martin. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; Francia
Fil: Ruiz Diaz Britez, Manuela. Universidad Nacional de Misiones. Parque Tecnológico Misiones; Argentina.
Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina
Fil: Paques, Luc. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia
Fil: Rozenberg, Philippe. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia - Fuente
- Plos One 9 (9) : e108332. (2014)
- Materia
-
Arboles Forestales
Anillo de Crecimiento
Procesamiento de Datos
Cambio Climático
Análisis de Datos
Forest Trees
Growth Rings
Data Processing
Climate Change
Data Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/4928
Ver los metadatos del registro completo
id |
INTADig_afaaa7224537ba3937014f869302f097 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/4928 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic AnalysisRossi, Jean PierreNardin, MaximeGodefroid, MartinRuiz Diaz, ManuelaSergent, Anne SophieMartinez Meier, AlejandroPaques, LucRozenberg, PhilippeArboles ForestalesAnillo de CrecimientoProcesamiento de DatosCambio ClimáticoAnálisis de DatosForest TreesGrowth RingsData ProcessingClimate ChangeData AnalysisTree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.EEA BarilocheFil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; FranciaFil: Nardin, Maxime. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; FranciaFil: Godefroid, Martin. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; FranciaFil: Ruiz Diaz Britez, Manuela. Universidad Nacional de Misiones. Parque Tecnológico Misiones; Argentina.Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Paques, Luc. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; FranciaFil: Rozenberg, Philippe. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; FranciaPlos One2019-04-17T12:46:08Z2019-04-17T12:46:08Z2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332http://hdl.handle.net/20.500.12123/49281932-6203https://doi.org/10.1371/journal.pone.0108332Plos One 9 (9) : e108332. (2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:29:30Zoai:localhost:20.500.12123/4928instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:30.689INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
spellingShingle |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis Rossi, Jean Pierre Arboles Forestales Anillo de Crecimiento Procesamiento de Datos Cambio Climático Análisis de Datos Forest Trees Growth Rings Data Processing Climate Change Data Analysis |
title_short |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_full |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_fullStr |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_full_unstemmed |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
title_sort |
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis |
dc.creator.none.fl_str_mv |
Rossi, Jean Pierre Nardin, Maxime Godefroid, Martin Ruiz Diaz, Manuela Sergent, Anne Sophie Martinez Meier, Alejandro Paques, Luc Rozenberg, Philippe |
author |
Rossi, Jean Pierre |
author_facet |
Rossi, Jean Pierre Nardin, Maxime Godefroid, Martin Ruiz Diaz, Manuela Sergent, Anne Sophie Martinez Meier, Alejandro Paques, Luc Rozenberg, Philippe |
author_role |
author |
author2 |
Nardin, Maxime Godefroid, Martin Ruiz Diaz, Manuela Sergent, Anne Sophie Martinez Meier, Alejandro Paques, Luc Rozenberg, Philippe |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Arboles Forestales Anillo de Crecimiento Procesamiento de Datos Cambio Climático Análisis de Datos Forest Trees Growth Rings Data Processing Climate Change Data Analysis |
topic |
Arboles Forestales Anillo de Crecimiento Procesamiento de Datos Cambio Climático Análisis de Datos Forest Trees Growth Rings Data Processing Climate Change Data Analysis |
dc.description.none.fl_txt_mv |
Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets. EEA Bariloche Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; Francia Fil: Nardin, Maxime. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia Fil: Godefroid, Martin. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; Francia Fil: Ruiz Diaz Britez, Manuela. Universidad Nacional de Misiones. Parque Tecnológico Misiones; Argentina. Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Paques, Luc. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia Fil: Rozenberg, Philippe. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia |
description |
Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 2019-04-17T12:46:08Z 2019-04-17T12:46:08Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332 http://hdl.handle.net/20.500.12123/4928 1932-6203 https://doi.org/10.1371/journal.pone.0108332 |
url |
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332 http://hdl.handle.net/20.500.12123/4928 https://doi.org/10.1371/journal.pone.0108332 |
identifier_str_mv |
1932-6203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Plos One |
publisher.none.fl_str_mv |
Plos One |
dc.source.none.fl_str_mv |
Plos One 9 (9) : e108332. (2014) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143513243156480 |
score |
12.712165 |