Game approach to distributed model predictive control

Autores
Giovanini, Leonardo Luis
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework.
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Materia
Predictive Control
Decentralised Control
Distributed Control
Game Theory
Heat Exchangers
Optimisation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14240

id CONICETDig_08d82def9c77814a738a882edc497702
oai_identifier_str oai:ri.conicet.gov.ar:11336/14240
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Game approach to distributed model predictive controlGiovanini, Leonardo LuisPredictive ControlDecentralised ControlDistributed ControlGame TheoryHeat ExchangersOptimisationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework.Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaInst Engineering Technology-iet2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14240Giovanini, Leonardo Luis; Game approach to distributed model predictive control; Inst Engineering Technology-iet; Iet Control Theory And Applications; 5; 15; 10-2011; 1729-17391751-8644enginfo:eu-repo/semantics/altIdentifier/doi//10.1049/iet-cta.2010.0634info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:18Zoai:ri.conicet.gov.ar:11336/14240instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:18.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Game approach to distributed model predictive control
title Game approach to distributed model predictive control
spellingShingle Game approach to distributed model predictive control
Giovanini, Leonardo Luis
Predictive Control
Decentralised Control
Distributed Control
Game Theory
Heat Exchangers
Optimisation
title_short Game approach to distributed model predictive control
title_full Game approach to distributed model predictive control
title_fullStr Game approach to distributed model predictive control
title_full_unstemmed Game approach to distributed model predictive control
title_sort Game approach to distributed model predictive control
dc.creator.none.fl_str_mv Giovanini, Leonardo Luis
author Giovanini, Leonardo Luis
author_facet Giovanini, Leonardo Luis
author_role author
dc.subject.none.fl_str_mv Predictive Control
Decentralised Control
Distributed Control
Game Theory
Heat Exchangers
Optimisation
topic Predictive Control
Decentralised Control
Distributed Control
Game Theory
Heat Exchangers
Optimisation
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework.
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
description This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14240
Giovanini, Leonardo Luis; Game approach to distributed model predictive control; Inst Engineering Technology-iet; Iet Control Theory And Applications; 5; 15; 10-2011; 1729-1739
1751-8644
url http://hdl.handle.net/11336/14240
identifier_str_mv Giovanini, Leonardo Luis; Game approach to distributed model predictive control; Inst Engineering Technology-iet; Iet Control Theory And Applications; 5; 15; 10-2011; 1729-1739
1751-8644
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi//10.1049/iet-cta.2010.0634
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Inst Engineering Technology-iet
publisher.none.fl_str_mv Inst Engineering Technology-iet
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613098226319360
score 13.070432