Game approach to distributed model predictive control
- Autores
- Giovanini, Leonardo Luis
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework.
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina - Materia
-
Predictive Control
Decentralised Control
Distributed Control
Game Theory
Heat Exchangers
Optimisation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14240
Ver los metadatos del registro completo
id |
CONICETDig_08d82def9c77814a738a882edc497702 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14240 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Game approach to distributed model predictive controlGiovanini, Leonardo LuisPredictive ControlDecentralised ControlDistributed ControlGame TheoryHeat ExchangersOptimisationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework.Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaInst Engineering Technology-iet2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14240Giovanini, Leonardo Luis; Game approach to distributed model predictive control; Inst Engineering Technology-iet; Iet Control Theory And Applications; 5; 15; 10-2011; 1729-17391751-8644enginfo:eu-repo/semantics/altIdentifier/doi//10.1049/iet-cta.2010.0634info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:18Zoai:ri.conicet.gov.ar:11336/14240instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:18.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Game approach to distributed model predictive control |
title |
Game approach to distributed model predictive control |
spellingShingle |
Game approach to distributed model predictive control Giovanini, Leonardo Luis Predictive Control Decentralised Control Distributed Control Game Theory Heat Exchangers Optimisation |
title_short |
Game approach to distributed model predictive control |
title_full |
Game approach to distributed model predictive control |
title_fullStr |
Game approach to distributed model predictive control |
title_full_unstemmed |
Game approach to distributed model predictive control |
title_sort |
Game approach to distributed model predictive control |
dc.creator.none.fl_str_mv |
Giovanini, Leonardo Luis |
author |
Giovanini, Leonardo Luis |
author_facet |
Giovanini, Leonardo Luis |
author_role |
author |
dc.subject.none.fl_str_mv |
Predictive Control Decentralised Control Distributed Control Game Theory Heat Exchangers Optimisation |
topic |
Predictive Control Decentralised Control Distributed Control Game Theory Heat Exchangers Optimisation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework. Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina |
description |
This study introduces a framework for distributed model predictive control (MPC) based on dynamic games, where centralised and decentralised control algorithms can be viewed as dynamical games with coupled control sets. The original optimisation problem is decomposed into smaller coupled optimisation problems in a distributed structure, which is solved iteratively. Then, the resulting dynamic game is analysed using the theory of potential games to derive the properties of the resulting algorithms. This sheds new light on the properties of existing MPC algorithms and allows us to establish a unified framework to analyse them. The control problem of a heat-exchanger network (HEN) is used to illustrate the effectiveness, practicality and limitations of the proposed framework. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14240 Giovanini, Leonardo Luis; Game approach to distributed model predictive control; Inst Engineering Technology-iet; Iet Control Theory And Applications; 5; 15; 10-2011; 1729-1739 1751-8644 |
url |
http://hdl.handle.net/11336/14240 |
identifier_str_mv |
Giovanini, Leonardo Luis; Game approach to distributed model predictive control; Inst Engineering Technology-iet; Iet Control Theory And Applications; 5; 15; 10-2011; 1729-1739 1751-8644 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi//10.1049/iet-cta.2010.0634 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Inst Engineering Technology-iet |
publisher.none.fl_str_mv |
Inst Engineering Technology-iet |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613098226319360 |
score |
13.070432 |