The Best Multipoint Padé Approximant

Autores
Levis, Fabián Eduardo; Rodriguez, Claudia Noemi
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Rodriguez, Claudia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Materia
BEST APPROXIMATION
COMPLEX DOMAIN
PADE APPROXIMANT
WEIGHTED LP-SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/102535

id CONICETDig_c2c80c4ef7009918ca950cf0d86df0d0
oai_identifier_str oai:ri.conicet.gov.ar:11336/102535
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Best Multipoint Padé ApproximantLevis, Fabián EduardoRodriguez, Claudia NoemiBEST APPROXIMATIONCOMPLEX DOMAINPADE APPROXIMANTWEIGHTED LP-SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment.Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Rodriguez, Claudia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaTaylor & Francis2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102535Levis, Fabián Eduardo; Rodriguez, Claudia Noemi; The Best Multipoint Padé Approximant; Taylor & Francis; Numerical Functional Analysis And Optimization; 39; 14; 9-2018; 1495-15130163-05631532-2467CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2018.1485696info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2018.1485696info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:05Zoai:ri.conicet.gov.ar:11336/102535instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:05.47CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Best Multipoint Padé Approximant
title The Best Multipoint Padé Approximant
spellingShingle The Best Multipoint Padé Approximant
Levis, Fabián Eduardo
BEST APPROXIMATION
COMPLEX DOMAIN
PADE APPROXIMANT
WEIGHTED LP-SPACES
title_short The Best Multipoint Padé Approximant
title_full The Best Multipoint Padé Approximant
title_fullStr The Best Multipoint Padé Approximant
title_full_unstemmed The Best Multipoint Padé Approximant
title_sort The Best Multipoint Padé Approximant
dc.creator.none.fl_str_mv Levis, Fabián Eduardo
Rodriguez, Claudia Noemi
author Levis, Fabián Eduardo
author_facet Levis, Fabián Eduardo
Rodriguez, Claudia Noemi
author_role author
author2 Rodriguez, Claudia Noemi
author2_role author
dc.subject.none.fl_str_mv BEST APPROXIMATION
COMPLEX DOMAIN
PADE APPROXIMANT
WEIGHTED LP-SPACES
topic BEST APPROXIMATION
COMPLEX DOMAIN
PADE APPROXIMANT
WEIGHTED LP-SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Rodriguez, Claudia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
description This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/102535
Levis, Fabián Eduardo; Rodriguez, Claudia Noemi; The Best Multipoint Padé Approximant; Taylor & Francis; Numerical Functional Analysis And Optimization; 39; 14; 9-2018; 1495-1513
0163-0563
1532-2467
CONICET Digital
CONICET
url http://hdl.handle.net/11336/102535
identifier_str_mv Levis, Fabián Eduardo; Rodriguez, Claudia Noemi; The Best Multipoint Padé Approximant; Taylor & Francis; Numerical Functional Analysis And Optimization; 39; 14; 9-2018; 1495-1513
0163-0563
1532-2467
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2018.1485696
info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2018.1485696
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268901905268736
score 13.13397