The Best Multipoint Padé Approximant
- Autores
- Levis, Fabián Eduardo; Rodriguez, Claudia Noemi
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Rodriguez, Claudia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina - Materia
-
BEST APPROXIMATION
COMPLEX DOMAIN
PADE APPROXIMANT
WEIGHTED LP-SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102535
Ver los metadatos del registro completo
id |
CONICETDig_c2c80c4ef7009918ca950cf0d86df0d0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102535 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Best Multipoint Padé ApproximantLevis, Fabián EduardoRodriguez, Claudia NoemiBEST APPROXIMATIONCOMPLEX DOMAINPADE APPROXIMANTWEIGHTED LP-SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment.Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Rodriguez, Claudia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaTaylor & Francis2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102535Levis, Fabián Eduardo; Rodriguez, Claudia Noemi; The Best Multipoint Padé Approximant; Taylor & Francis; Numerical Functional Analysis And Optimization; 39; 14; 9-2018; 1495-15130163-05631532-2467CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2018.1485696info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2018.1485696info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:05Zoai:ri.conicet.gov.ar:11336/102535instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:05.47CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Best Multipoint Padé Approximant |
title |
The Best Multipoint Padé Approximant |
spellingShingle |
The Best Multipoint Padé Approximant Levis, Fabián Eduardo BEST APPROXIMATION COMPLEX DOMAIN PADE APPROXIMANT WEIGHTED LP-SPACES |
title_short |
The Best Multipoint Padé Approximant |
title_full |
The Best Multipoint Padé Approximant |
title_fullStr |
The Best Multipoint Padé Approximant |
title_full_unstemmed |
The Best Multipoint Padé Approximant |
title_sort |
The Best Multipoint Padé Approximant |
dc.creator.none.fl_str_mv |
Levis, Fabián Eduardo Rodriguez, Claudia Noemi |
author |
Levis, Fabián Eduardo |
author_facet |
Levis, Fabián Eduardo Rodriguez, Claudia Noemi |
author_role |
author |
author2 |
Rodriguez, Claudia Noemi |
author2_role |
author |
dc.subject.none.fl_str_mv |
BEST APPROXIMATION COMPLEX DOMAIN PADE APPROXIMANT WEIGHTED LP-SPACES |
topic |
BEST APPROXIMATION COMPLEX DOMAIN PADE APPROXIMANT WEIGHTED LP-SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment. Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Rodriguez, Claudia Noemi. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina |
description |
This paper is dealing with the problem of finding the best multipoint Padé approximant of an analytic function when data in some neighborhoods of sampling points are more important than others. More exactly, we obtain a multipoint Padé approximants as limits of best rational Lp-approximations on union of disks, when the measure of them tends to zero with different speeds. As such, this technique provides useful qualitative and analytic information concerning the approximants, which is difficult to obtain from a strictly numerical treatment. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102535 Levis, Fabián Eduardo; Rodriguez, Claudia Noemi; The Best Multipoint Padé Approximant; Taylor & Francis; Numerical Functional Analysis And Optimization; 39; 14; 9-2018; 1495-1513 0163-0563 1532-2467 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102535 |
identifier_str_mv |
Levis, Fabián Eduardo; Rodriguez, Claudia Noemi; The Best Multipoint Padé Approximant; Taylor & Francis; Numerical Functional Analysis And Optimization; 39; 14; 9-2018; 1495-1513 0163-0563 1532-2467 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2018.1485696 info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2018.1485696 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268901905268736 |
score |
13.13397 |