BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge
- Autores
- Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Grønli, Tor Morten; Zunino Suarez, Alejandro Octavio; Mateos Diaz, Cristian Maximiliano
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Due to the increasing interest in employing smartphones as first-class citizens in high-performance Edge computing environments, the necessity of software to facilitate the evaluation of load-balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a number of r scenarios that contain these smartphones, which differ in terms of the start battery levels required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of the g strategies on each ri , so that the smartphones have the required start battery levels pre-configured for ri , which requires discharging or charging smartphones. This leads to a number of e = r*g scenario preparation events that must be sequentially developed, considering that the time required to develop each event depends on the previous event. Thus, the single-objective problem addressed here implies finding out the sequential order in which the events should be developed, so that the total time required to develop them is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since defining the sequential order to develop the events is equivalent to defining the sequential order to visit the cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms those of the methods currently used for the problem, reaching significant savings regarding the time required to develop the events in the range [12, 85]%.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Toloza, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Majchrzak, Tim A.. University Of Agder; Noruega
Fil: Grønli, Tor Morten. Kristiania University College; Noruega
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
EDGE COMPUTING
SMARTPHONE
PROFILING
BENCHMARKING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/260493
Ver los metadatos del registro completo
id |
CONICETDig_c873f862baa40365f88d6b893ca41720 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/260493 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the EdgeYannibelli, Virginia DanielaHirsch Jofré, Matías EberardoToloza, Juan ManuelMajchrzak, Tim A.Grønli, Tor MortenZunino Suarez, Alejandro OctavioMateos Diaz, Cristian MaximilianoEDGE COMPUTINGSMARTPHONEPROFILINGBENCHMARKINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Due to the increasing interest in employing smartphones as first-class citizens in high-performance Edge computing environments, the necessity of software to facilitate the evaluation of load-balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a number of r scenarios that contain these smartphones, which differ in terms of the start battery levels required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of the g strategies on each ri , so that the smartphones have the required start battery levels pre-configured for ri , which requires discharging or charging smartphones. This leads to a number of e = r*g scenario preparation events that must be sequentially developed, considering that the time required to develop each event depends on the previous event. Thus, the single-objective problem addressed here implies finding out the sequential order in which the events should be developed, so that the total time required to develop them is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since defining the sequential order to develop the events is equivalent to defining the sequential order to visit the cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms those of the methods currently used for the problem, reaching significant savings regarding the time required to develop the events in the range [12, 85]%.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Toloza, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Majchrzak, Tim A.. University Of Agder; NoruegaFil: Grønli, Tor Morten. Kristiania University College; NoruegaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaInstitute of Electrical and Electronics Engineers2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260493Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Grønli, Tor Morten; et al.; BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge; Institute of Electrical and Electronics Engineers; IEEE Access; 12; 9-2024; 145893-1459192169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10697165/info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2024.3469641info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:59:04Zoai:ri.conicet.gov.ar:11336/260493instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:59:04.881CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge |
title |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge |
spellingShingle |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge Yannibelli, Virginia Daniela EDGE COMPUTING SMARTPHONE PROFILING BENCHMARKING |
title_short |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge |
title_full |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge |
title_fullStr |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge |
title_full_unstemmed |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge |
title_sort |
BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Hirsch Jofré, Matías Eberardo Toloza, Juan Manuel Majchrzak, Tim A. Grønli, Tor Morten Zunino Suarez, Alejandro Octavio Mateos Diaz, Cristian Maximiliano |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Hirsch Jofré, Matías Eberardo Toloza, Juan Manuel Majchrzak, Tim A. Grønli, Tor Morten Zunino Suarez, Alejandro Octavio Mateos Diaz, Cristian Maximiliano |
author_role |
author |
author2 |
Hirsch Jofré, Matías Eberardo Toloza, Juan Manuel Majchrzak, Tim A. Grønli, Tor Morten Zunino Suarez, Alejandro Octavio Mateos Diaz, Cristian Maximiliano |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
EDGE COMPUTING SMARTPHONE PROFILING BENCHMARKING |
topic |
EDGE COMPUTING SMARTPHONE PROFILING BENCHMARKING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Due to the increasing interest in employing smartphones as first-class citizens in high-performance Edge computing environments, the necessity of software to facilitate the evaluation of load-balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a number of r scenarios that contain these smartphones, which differ in terms of the start battery levels required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of the g strategies on each ri , so that the smartphones have the required start battery levels pre-configured for ri , which requires discharging or charging smartphones. This leads to a number of e = r*g scenario preparation events that must be sequentially developed, considering that the time required to develop each event depends on the previous event. Thus, the single-objective problem addressed here implies finding out the sequential order in which the events should be developed, so that the total time required to develop them is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since defining the sequential order to develop the events is equivalent to defining the sequential order to visit the cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms those of the methods currently used for the problem, reaching significant savings regarding the time required to develop the events in the range [12, 85]%. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Toloza, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Majchrzak, Tim A.. University Of Agder; Noruega Fil: Grønli, Tor Morten. Kristiania University College; Noruega Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
Due to the increasing interest in employing smartphones as first-class citizens in high-performance Edge computing environments, the necessity of software to facilitate the evaluation of load-balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a number of r scenarios that contain these smartphones, which differ in terms of the start battery levels required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of the g strategies on each ri , so that the smartphones have the required start battery levels pre-configured for ri , which requires discharging or charging smartphones. This leads to a number of e = r*g scenario preparation events that must be sequentially developed, considering that the time required to develop each event depends on the previous event. Thus, the single-objective problem addressed here implies finding out the sequential order in which the events should be developed, so that the total time required to develop them is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since defining the sequential order to develop the events is equivalent to defining the sequential order to visit the cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms those of the methods currently used for the problem, reaching significant savings regarding the time required to develop the events in the range [12, 85]%. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/260493 Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Grønli, Tor Morten; et al.; BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge; Institute of Electrical and Electronics Engineers; IEEE Access; 12; 9-2024; 145893-145919 2169-3536 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/260493 |
identifier_str_mv |
Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Grønli, Tor Morten; et al.; BAGESS: A Software Module Based on a Genetic Algorithm to Sequentially Order Load-Balancing Evaluation Scenarios Over Smartphone-Based Clusters at the Edge; Institute of Electrical and Electronics Engineers; IEEE Access; 12; 9-2024; 145893-145919 2169-3536 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10697165/ info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2024.3469641 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083131798454272 |
score |
13.22299 |