A task execution scheme for dew computing with state-of-the-art smartphones
- Autores
- Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Majchrzak, Tim A.; Grønli, Tor-Morten; Kaindl, Hermann
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The computing resources of today’s smartphones are underutilized most of the time. Using these resources could be highly beneficial in edge computing and fog computing contexts, for example, to support urban services for citizens. However, new challenges, especially regarding job scheduling, arise. Smartphones may form ad hoc networks, but individual devices highly differ in computational capabilities and (tolerable) energy usage. We take into account these particularities to validate a task execution scheme that relies on the computing power that clusters of mobile devices could provide. In this paper, we expand the study of several practical heuristics for job scheduling including execution scenarios with state-of-the-art smartphones. With the results of new simulated scenarios, we confirm previous findings and better comprehend the baseline approaches already proposed for the problem. This study also sheds some light on the capabilities of small-sized clusters comprising mid-range and low-end smartphones when the objective is to achieve real-time stream processing using Tensorflow object recognition models as edge jobs. Ultimately, we strive for industry applications to improve task scheduling for dew computing contexts. Heuristics such as ours plus supporting dew middleware could improve citizen participation by allowing a much wider use of dew computing resources, especially in urban contexts in order to help build smart cities.
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Majchrzak, Tim A.. University Of Agder; Noruega
Fil: Grønli, Tor-Morten. Kristiania University College; Noruega
Fil: Kaindl, Hermann. Technischen Universität Wien; Austria - Materia
-
DEW COMPUTING
EDGE COMPUTING
JOB SCHEDULING
SCHEDULING HEURISTICS
SMARTPHONE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/174018
Ver los metadatos del registro completo
id |
CONICETDig_1c8e0c101e9078c92ae04667ff908940 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/174018 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A task execution scheme for dew computing with state-of-the-art smartphonesHirsch Jofré, Matías EberardoMateos Diaz, Cristian MaximilianoZunino Suarez, Alejandro OctavioMajchrzak, Tim A.Grønli, Tor-MortenKaindl, HermannDEW COMPUTINGEDGE COMPUTINGJOB SCHEDULINGSCHEDULING HEURISTICSSMARTPHONEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The computing resources of today’s smartphones are underutilized most of the time. Using these resources could be highly beneficial in edge computing and fog computing contexts, for example, to support urban services for citizens. However, new challenges, especially regarding job scheduling, arise. Smartphones may form ad hoc networks, but individual devices highly differ in computational capabilities and (tolerable) energy usage. We take into account these particularities to validate a task execution scheme that relies on the computing power that clusters of mobile devices could provide. In this paper, we expand the study of several practical heuristics for job scheduling including execution scenarios with state-of-the-art smartphones. With the results of new simulated scenarios, we confirm previous findings and better comprehend the baseline approaches already proposed for the problem. This study also sheds some light on the capabilities of small-sized clusters comprising mid-range and low-end smartphones when the objective is to achieve real-time stream processing using Tensorflow object recognition models as edge jobs. Ultimately, we strive for industry applications to improve task scheduling for dew computing contexts. Heuristics such as ours plus supporting dew middleware could improve citizen participation by allowing a much wider use of dew computing resources, especially in urban contexts in order to help build smart cities.Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Majchrzak, Tim A.. University Of Agder; NoruegaFil: Grønli, Tor-Morten. Kristiania University College; NoruegaFil: Kaindl, Hermann. Technischen Universität Wien; AustriaMultidisciplinary Digital Publishing Institute2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174018Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Majchrzak, Tim A.; Grønli, Tor-Morten; et al.; A task execution scheme for dew computing with state-of-the-art smartphones; Multidisciplinary Digital Publishing Institute; Electronics (Switzerland); 10; 16; 8-2021; 1-222079-9292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/10/16/2006info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics10162006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/174018instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:20.25CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A task execution scheme for dew computing with state-of-the-art smartphones |
title |
A task execution scheme for dew computing with state-of-the-art smartphones |
spellingShingle |
A task execution scheme for dew computing with state-of-the-art smartphones Hirsch Jofré, Matías Eberardo DEW COMPUTING EDGE COMPUTING JOB SCHEDULING SCHEDULING HEURISTICS SMARTPHONE |
title_short |
A task execution scheme for dew computing with state-of-the-art smartphones |
title_full |
A task execution scheme for dew computing with state-of-the-art smartphones |
title_fullStr |
A task execution scheme for dew computing with state-of-the-art smartphones |
title_full_unstemmed |
A task execution scheme for dew computing with state-of-the-art smartphones |
title_sort |
A task execution scheme for dew computing with state-of-the-art smartphones |
dc.creator.none.fl_str_mv |
Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio Majchrzak, Tim A. Grønli, Tor-Morten Kaindl, Hermann |
author |
Hirsch Jofré, Matías Eberardo |
author_facet |
Hirsch Jofré, Matías Eberardo Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio Majchrzak, Tim A. Grønli, Tor-Morten Kaindl, Hermann |
author_role |
author |
author2 |
Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio Majchrzak, Tim A. Grønli, Tor-Morten Kaindl, Hermann |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DEW COMPUTING EDGE COMPUTING JOB SCHEDULING SCHEDULING HEURISTICS SMARTPHONE |
topic |
DEW COMPUTING EDGE COMPUTING JOB SCHEDULING SCHEDULING HEURISTICS SMARTPHONE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The computing resources of today’s smartphones are underutilized most of the time. Using these resources could be highly beneficial in edge computing and fog computing contexts, for example, to support urban services for citizens. However, new challenges, especially regarding job scheduling, arise. Smartphones may form ad hoc networks, but individual devices highly differ in computational capabilities and (tolerable) energy usage. We take into account these particularities to validate a task execution scheme that relies on the computing power that clusters of mobile devices could provide. In this paper, we expand the study of several practical heuristics for job scheduling including execution scenarios with state-of-the-art smartphones. With the results of new simulated scenarios, we confirm previous findings and better comprehend the baseline approaches already proposed for the problem. This study also sheds some light on the capabilities of small-sized clusters comprising mid-range and low-end smartphones when the objective is to achieve real-time stream processing using Tensorflow object recognition models as edge jobs. Ultimately, we strive for industry applications to improve task scheduling for dew computing contexts. Heuristics such as ours plus supporting dew middleware could improve citizen participation by allowing a much wider use of dew computing resources, especially in urban contexts in order to help build smart cities. Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Majchrzak, Tim A.. University Of Agder; Noruega Fil: Grønli, Tor-Morten. Kristiania University College; Noruega Fil: Kaindl, Hermann. Technischen Universität Wien; Austria |
description |
The computing resources of today’s smartphones are underutilized most of the time. Using these resources could be highly beneficial in edge computing and fog computing contexts, for example, to support urban services for citizens. However, new challenges, especially regarding job scheduling, arise. Smartphones may form ad hoc networks, but individual devices highly differ in computational capabilities and (tolerable) energy usage. We take into account these particularities to validate a task execution scheme that relies on the computing power that clusters of mobile devices could provide. In this paper, we expand the study of several practical heuristics for job scheduling including execution scenarios with state-of-the-art smartphones. With the results of new simulated scenarios, we confirm previous findings and better comprehend the baseline approaches already proposed for the problem. This study also sheds some light on the capabilities of small-sized clusters comprising mid-range and low-end smartphones when the objective is to achieve real-time stream processing using Tensorflow object recognition models as edge jobs. Ultimately, we strive for industry applications to improve task scheduling for dew computing contexts. Heuristics such as ours plus supporting dew middleware could improve citizen participation by allowing a much wider use of dew computing resources, especially in urban contexts in order to help build smart cities. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/174018 Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Majchrzak, Tim A.; Grønli, Tor-Morten; et al.; A task execution scheme for dew computing with state-of-the-art smartphones; Multidisciplinary Digital Publishing Institute; Electronics (Switzerland); 10; 16; 8-2021; 1-22 2079-9292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/174018 |
identifier_str_mv |
Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Majchrzak, Tim A.; Grønli, Tor-Morten; et al.; A task execution scheme for dew computing with state-of-the-art smartphones; Multidisciplinary Digital Publishing Institute; Electronics (Switzerland); 10; 16; 8-2021; 1-22 2079-9292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/10/16/2006 info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics10162006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269999240052736 |
score |
13.13397 |