Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm
- Autores
- Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Zunino Suarez, Alejandro Octavio; Mateos Diaz, Cristian Maximiliano
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dew computing aims to minimize the dependency on remote clouds by exploiting nearby nodes for solving non-trivial computational tasks, e.g., AI inferences. Nowadays, smartphones are good candidates for computing nodes; hence, smartphone clusters have been proposed to accomplish this task and load balancing is frequently a subject of research. Using the same real—i.e., in vivo—testbeds to evaluate different load balancing strategies based on energy utilization is challenging and time consuming. In principle, test repetition requires a platform to control battery charging periods between repetitions. Our Motrol hard-soft device has such a capability; however, it lacks a mechanism to assure and reduce the time in which all smartphone batteries reach the level required by the next test. We propose an evolutionary algorithm to execute smartphone battery (dis)charging plans to minimize test preparation time. Charging plans proposed by the algorithm include charging at different speeds, which is achieved by charging at maximum speed while exercising energy hungry components (the CPU and screen). To evaluate the algorithm, we use various charging/discharging battery traces of real smartphones and we compare the time-taken for our method to collectively prepare a set of smartphones versus that of individually (dis)charging all smartphones at maximum speed.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Toloza, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Majchrzak, Tim A.. University of Agder; Noruega
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
BENCHMARKING
DEW COMPUTING
EVOLUTIONARY COMPUTING
MOTROL
PROFILING
SMARTPHONES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231424
Ver los metadatos del registro completo
id |
CONICETDig_c6552853180ed57caacf637b48c135a1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231424 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary AlgorithmYannibelli, Virginia DanielaHirsch Jofré, Matías EberardoToloza, Juan ManuelMajchrzak, Tim A.Zunino Suarez, Alejandro OctavioMateos Diaz, Cristian MaximilianoBENCHMARKINGDEW COMPUTINGEVOLUTIONARY COMPUTINGMOTROLPROFILINGSMARTPHONEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Dew computing aims to minimize the dependency on remote clouds by exploiting nearby nodes for solving non-trivial computational tasks, e.g., AI inferences. Nowadays, smartphones are good candidates for computing nodes; hence, smartphone clusters have been proposed to accomplish this task and load balancing is frequently a subject of research. Using the same real—i.e., in vivo—testbeds to evaluate different load balancing strategies based on energy utilization is challenging and time consuming. In principle, test repetition requires a platform to control battery charging periods between repetitions. Our Motrol hard-soft device has such a capability; however, it lacks a mechanism to assure and reduce the time in which all smartphone batteries reach the level required by the next test. We propose an evolutionary algorithm to execute smartphone battery (dis)charging plans to minimize test preparation time. Charging plans proposed by the algorithm include charging at different speeds, which is achieved by charging at maximum speed while exercising energy hungry components (the CPU and screen). To evaluate the algorithm, we use various charging/discharging battery traces of real smartphones and we compare the time-taken for our method to collectively prepare a set of smartphones versus that of individually (dis)charging all smartphones at maximum speed.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Toloza, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Majchrzak, Tim A.. University of Agder; NoruegaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaMolecular Diversity Preservation International2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231424Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Zunino Suarez, Alejandro Octavio; et al.; Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm; Molecular Diversity Preservation International; Sensors; 23; 3; 2-2023; 1-221424-8220CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/23/3/1388info:eu-repo/semantics/altIdentifier/doi/10.3390/s23031388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:35Zoai:ri.conicet.gov.ar:11336/231424instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:35.996CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm |
title |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm |
spellingShingle |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm Yannibelli, Virginia Daniela BENCHMARKING DEW COMPUTING EVOLUTIONARY COMPUTING MOTROL PROFILING SMARTPHONES |
title_short |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm |
title_full |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm |
title_fullStr |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm |
title_full_unstemmed |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm |
title_sort |
Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Hirsch Jofré, Matías Eberardo Toloza, Juan Manuel Majchrzak, Tim A. Zunino Suarez, Alejandro Octavio Mateos Diaz, Cristian Maximiliano |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Hirsch Jofré, Matías Eberardo Toloza, Juan Manuel Majchrzak, Tim A. Zunino Suarez, Alejandro Octavio Mateos Diaz, Cristian Maximiliano |
author_role |
author |
author2 |
Hirsch Jofré, Matías Eberardo Toloza, Juan Manuel Majchrzak, Tim A. Zunino Suarez, Alejandro Octavio Mateos Diaz, Cristian Maximiliano |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BENCHMARKING DEW COMPUTING EVOLUTIONARY COMPUTING MOTROL PROFILING SMARTPHONES |
topic |
BENCHMARKING DEW COMPUTING EVOLUTIONARY COMPUTING MOTROL PROFILING SMARTPHONES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dew computing aims to minimize the dependency on remote clouds by exploiting nearby nodes for solving non-trivial computational tasks, e.g., AI inferences. Nowadays, smartphones are good candidates for computing nodes; hence, smartphone clusters have been proposed to accomplish this task and load balancing is frequently a subject of research. Using the same real—i.e., in vivo—testbeds to evaluate different load balancing strategies based on energy utilization is challenging and time consuming. In principle, test repetition requires a platform to control battery charging periods between repetitions. Our Motrol hard-soft device has such a capability; however, it lacks a mechanism to assure and reduce the time in which all smartphone batteries reach the level required by the next test. We propose an evolutionary algorithm to execute smartphone battery (dis)charging plans to minimize test preparation time. Charging plans proposed by the algorithm include charging at different speeds, which is achieved by charging at maximum speed while exercising energy hungry components (the CPU and screen). To evaluate the algorithm, we use various charging/discharging battery traces of real smartphones and we compare the time-taken for our method to collectively prepare a set of smartphones versus that of individually (dis)charging all smartphones at maximum speed. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Toloza, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Majchrzak, Tim A.. University of Agder; Noruega Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
Dew computing aims to minimize the dependency on remote clouds by exploiting nearby nodes for solving non-trivial computational tasks, e.g., AI inferences. Nowadays, smartphones are good candidates for computing nodes; hence, smartphone clusters have been proposed to accomplish this task and load balancing is frequently a subject of research. Using the same real—i.e., in vivo—testbeds to evaluate different load balancing strategies based on energy utilization is challenging and time consuming. In principle, test repetition requires a platform to control battery charging periods between repetitions. Our Motrol hard-soft device has such a capability; however, it lacks a mechanism to assure and reduce the time in which all smartphone batteries reach the level required by the next test. We propose an evolutionary algorithm to execute smartphone battery (dis)charging plans to minimize test preparation time. Charging plans proposed by the algorithm include charging at different speeds, which is achieved by charging at maximum speed while exercising energy hungry components (the CPU and screen). To evaluate the algorithm, we use various charging/discharging battery traces of real smartphones and we compare the time-taken for our method to collectively prepare a set of smartphones versus that of individually (dis)charging all smartphones at maximum speed. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231424 Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Zunino Suarez, Alejandro Octavio; et al.; Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm; Molecular Diversity Preservation International; Sensors; 23; 3; 2-2023; 1-22 1424-8220 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231424 |
identifier_str_mv |
Yannibelli, Virginia Daniela; Hirsch Jofré, Matías Eberardo; Toloza, Juan Manuel; Majchrzak, Tim A.; Zunino Suarez, Alejandro Octavio; et al.; Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm; Molecular Diversity Preservation International; Sensors; 23; 3; 2-2023; 1-22 1424-8220 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/23/3/1388 info:eu-repo/semantics/altIdentifier/doi/10.3390/s23031388 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269471515869184 |
score |
13.13397 |