Giant planet formation at the pressure maxima of protoplanetary disks

Autores
Guilera, Octavio Miguel; Sandor, Zs.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer sizeplanetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On theother hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation,favoring the formation of massive cores.Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary diskand their implications for the formation of massive cores as triggering a gaseous runaway accretion phase.Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosityregion in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets isalso considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and thesurrounding gas.Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planetmigration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressuremaxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locationsare not exactly at the same positions. Thus, a planet?s semi-major axis oscillations around zero torque locations predicted by MHDand HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima.Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferentiallocations for the formation and trap of massive cores.
Fil: Guilera, Octavio Miguel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Sandor, Zs.. Department Of Astronomy, Eötvös Loránd University; Hungría
Materia
Planets
Gaseous Planets
Protoplanetary Disks
Satellites
Formation of Planets
Formation of Satellites
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41049

id CONICETDig_c81e347d6257a6e54d471440d68a8758
oai_identifier_str oai:ri.conicet.gov.ar:11336/41049
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Giant planet formation at the pressure maxima of protoplanetary disksGuilera, Octavio MiguelSandor, Zs.PlanetsGaseous PlanetsProtoplanetary DisksSatellitesFormation of PlanetsFormation of Satelliteshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer sizeplanetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On theother hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation,favoring the formation of massive cores.Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary diskand their implications for the formation of massive cores as triggering a gaseous runaway accretion phase.Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosityregion in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets isalso considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and thesurrounding gas.Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planetmigration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressuremaxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locationsare not exactly at the same positions. Thus, a planet?s semi-major axis oscillations around zero torque locations predicted by MHDand HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima.Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferentiallocations for the formation and trap of massive cores.Fil: Guilera, Octavio Miguel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Sandor, Zs.. Department Of Astronomy, Eötvös Loránd University; HungríaEDP Sciences2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41049Guilera, Octavio Miguel; Sandor, Zs.; Giant planet formation at the pressure maxima of protoplanetary disks; EDP Sciences; Astronomy and Astrophysics; 604; 4-2017; A100004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/10.1051/0004-6361/201629843info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201629843info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:46Zoai:ri.conicet.gov.ar:11336/41049instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:46.214CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Giant planet formation at the pressure maxima of protoplanetary disks
title Giant planet formation at the pressure maxima of protoplanetary disks
spellingShingle Giant planet formation at the pressure maxima of protoplanetary disks
Guilera, Octavio Miguel
Planets
Gaseous Planets
Protoplanetary Disks
Satellites
Formation of Planets
Formation of Satellites
title_short Giant planet formation at the pressure maxima of protoplanetary disks
title_full Giant planet formation at the pressure maxima of protoplanetary disks
title_fullStr Giant planet formation at the pressure maxima of protoplanetary disks
title_full_unstemmed Giant planet formation at the pressure maxima of protoplanetary disks
title_sort Giant planet formation at the pressure maxima of protoplanetary disks
dc.creator.none.fl_str_mv Guilera, Octavio Miguel
Sandor, Zs.
author Guilera, Octavio Miguel
author_facet Guilera, Octavio Miguel
Sandor, Zs.
author_role author
author2 Sandor, Zs.
author2_role author
dc.subject.none.fl_str_mv Planets
Gaseous Planets
Protoplanetary Disks
Satellites
Formation of Planets
Formation of Satellites
topic Planets
Gaseous Planets
Protoplanetary Disks
Satellites
Formation of Planets
Formation of Satellites
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer sizeplanetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On theother hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation,favoring the formation of massive cores.Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary diskand their implications for the formation of massive cores as triggering a gaseous runaway accretion phase.Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosityregion in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets isalso considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and thesurrounding gas.Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planetmigration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressuremaxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locationsare not exactly at the same positions. Thus, a planet?s semi-major axis oscillations around zero torque locations predicted by MHDand HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima.Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferentiallocations for the formation and trap of massive cores.
Fil: Guilera, Octavio Miguel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Sandor, Zs.. Department Of Astronomy, Eötvös Loránd University; Hungría
description Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer sizeplanetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On theother hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation,favoring the formation of massive cores.Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary diskand their implications for the formation of massive cores as triggering a gaseous runaway accretion phase.Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosityregion in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets isalso considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and thesurrounding gas.Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planetmigration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressuremaxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locationsare not exactly at the same positions. Thus, a planet?s semi-major axis oscillations around zero torque locations predicted by MHDand HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima.Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferentiallocations for the formation and trap of massive cores.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41049
Guilera, Octavio Miguel; Sandor, Zs.; Giant planet formation at the pressure maxima of protoplanetary disks; EDP Sciences; Astronomy and Astrophysics; 604; 4-2017; A10
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41049
identifier_str_mv Guilera, Octavio Miguel; Sandor, Zs.; Giant planet formation at the pressure maxima of protoplanetary disks; EDP Sciences; Astronomy and Astrophysics; 604; 4-2017; A10
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/10.1051/0004-6361/201629843
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201629843
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613999626289152
score 13.070432