Planetesimal fragmentation and giant planet formation

Autores
San Sebastián, Irina Luciana; Guilera, Octavio Miguel; Parisi, Mirta Gabriela
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Most planet formation models that incorporate planetesimal fragmentation consider a catastrophic impact energy threshold for basalts at a constant velocity of 3 km/s throughout the process of the formation of the planets. However, as planets grow, the relative velocities of the surrounding planetesimals increase from velocities of the order of meters per second to a few kilometers per second. In addition, beyond the ice line where giant planets are formed, planetesimals are expected to be composed roughly of 50% ices.Aims. We aim to study the role of planetesimal fragmentation on giant planet formation considering the planetesimal catastrophic impact energy threshold as a function of the planetesimal relative velocities and compositions.Methods. We improved our model of planetesimal fragmentation incorporating a functional form of the catastrophic impact energythreshold with the planetesimal relative velocities and compositions. We also improved in our model the accretion of small fragments produced by the fragmentation of planetesimals during the collisional cascade considering specific pebble accretion rates.Results. We find that a more accurate and realistic model for the calculation of the catastrophic impact energy threshold tends toslow down the formation of massive cores. Only for reduced grain opacity values at the envelope of the planet is the cross-over massachieved before the disk timescale dissipation.Conclusions. While planetesimal fragmentation favors the quick formation of massive cores of 5?10 Earth masses the cross-over mass could be inhibited by planetesimal fragmentation. However, grain opacity reduction or pollution by the accreted planetesimals together with planetesimal fragmentation could explain the formation of giant planets with low-mass cores.
Fil: San Sebastián, Irina Luciana. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Guilera, Octavio Miguel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Pontificia Universidad Católica de Chile; Chile
Fil: Parisi, Mirta Gabriela. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
PLANETS AND SATELLITES: FORMATION
PLANETS AND SATELLITES: GASEOUS PLANETS
METHODS: NUMERICAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/118175

id CONICETDig_0da32e657e598bc5458c582084a3eaa5
oai_identifier_str oai:ri.conicet.gov.ar:11336/118175
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Planetesimal fragmentation and giant planet formationSan Sebastián, Irina LucianaGuilera, Octavio MiguelParisi, Mirta GabrielaPLANETS AND SATELLITES: FORMATIONPLANETS AND SATELLITES: GASEOUS PLANETSMETHODS: NUMERICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Most planet formation models that incorporate planetesimal fragmentation consider a catastrophic impact energy threshold for basalts at a constant velocity of 3 km/s throughout the process of the formation of the planets. However, as planets grow, the relative velocities of the surrounding planetesimals increase from velocities of the order of meters per second to a few kilometers per second. In addition, beyond the ice line where giant planets are formed, planetesimals are expected to be composed roughly of 50% ices.Aims. We aim to study the role of planetesimal fragmentation on giant planet formation considering the planetesimal catastrophic impact energy threshold as a function of the planetesimal relative velocities and compositions.Methods. We improved our model of planetesimal fragmentation incorporating a functional form of the catastrophic impact energythreshold with the planetesimal relative velocities and compositions. We also improved in our model the accretion of small fragments produced by the fragmentation of planetesimals during the collisional cascade considering specific pebble accretion rates.Results. We find that a more accurate and realistic model for the calculation of the catastrophic impact energy threshold tends toslow down the formation of massive cores. Only for reduced grain opacity values at the envelope of the planet is the cross-over massachieved before the disk timescale dissipation.Conclusions. While planetesimal fragmentation favors the quick formation of massive cores of 5?10 Earth masses the cross-over mass could be inhibited by planetesimal fragmentation. However, grain opacity reduction or pollution by the accreted planetesimals together with planetesimal fragmentation could explain the formation of giant planets with low-mass cores.Fil: San Sebastián, Irina Luciana. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Guilera, Octavio Miguel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Pontificia Universidad Católica de Chile; ChileFil: Parisi, Mirta Gabriela. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaEDP Sciences2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118175San Sebastián, Irina Luciana; Guilera, Octavio Miguel; Parisi, Mirta Gabriela; Planetesimal fragmentation and giant planet formation; EDP Sciences; Astronomy and Astrophysics; 625; 5-2019; 1-120004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.12288info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201834168info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:17:18Zoai:ri.conicet.gov.ar:11336/118175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:17:19.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Planetesimal fragmentation and giant planet formation
title Planetesimal fragmentation and giant planet formation
spellingShingle Planetesimal fragmentation and giant planet formation
San Sebastián, Irina Luciana
PLANETS AND SATELLITES: FORMATION
PLANETS AND SATELLITES: GASEOUS PLANETS
METHODS: NUMERICAL
title_short Planetesimal fragmentation and giant planet formation
title_full Planetesimal fragmentation and giant planet formation
title_fullStr Planetesimal fragmentation and giant planet formation
title_full_unstemmed Planetesimal fragmentation and giant planet formation
title_sort Planetesimal fragmentation and giant planet formation
dc.creator.none.fl_str_mv San Sebastián, Irina Luciana
Guilera, Octavio Miguel
Parisi, Mirta Gabriela
author San Sebastián, Irina Luciana
author_facet San Sebastián, Irina Luciana
Guilera, Octavio Miguel
Parisi, Mirta Gabriela
author_role author
author2 Guilera, Octavio Miguel
Parisi, Mirta Gabriela
author2_role author
author
dc.subject.none.fl_str_mv PLANETS AND SATELLITES: FORMATION
PLANETS AND SATELLITES: GASEOUS PLANETS
METHODS: NUMERICAL
topic PLANETS AND SATELLITES: FORMATION
PLANETS AND SATELLITES: GASEOUS PLANETS
METHODS: NUMERICAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Most planet formation models that incorporate planetesimal fragmentation consider a catastrophic impact energy threshold for basalts at a constant velocity of 3 km/s throughout the process of the formation of the planets. However, as planets grow, the relative velocities of the surrounding planetesimals increase from velocities of the order of meters per second to a few kilometers per second. In addition, beyond the ice line where giant planets are formed, planetesimals are expected to be composed roughly of 50% ices.Aims. We aim to study the role of planetesimal fragmentation on giant planet formation considering the planetesimal catastrophic impact energy threshold as a function of the planetesimal relative velocities and compositions.Methods. We improved our model of planetesimal fragmentation incorporating a functional form of the catastrophic impact energythreshold with the planetesimal relative velocities and compositions. We also improved in our model the accretion of small fragments produced by the fragmentation of planetesimals during the collisional cascade considering specific pebble accretion rates.Results. We find that a more accurate and realistic model for the calculation of the catastrophic impact energy threshold tends toslow down the formation of massive cores. Only for reduced grain opacity values at the envelope of the planet is the cross-over massachieved before the disk timescale dissipation.Conclusions. While planetesimal fragmentation favors the quick formation of massive cores of 5?10 Earth masses the cross-over mass could be inhibited by planetesimal fragmentation. However, grain opacity reduction or pollution by the accreted planetesimals together with planetesimal fragmentation could explain the formation of giant planets with low-mass cores.
Fil: San Sebastián, Irina Luciana. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Guilera, Octavio Miguel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Pontificia Universidad Católica de Chile; Chile
Fil: Parisi, Mirta Gabriela. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description Context. Most planet formation models that incorporate planetesimal fragmentation consider a catastrophic impact energy threshold for basalts at a constant velocity of 3 km/s throughout the process of the formation of the planets. However, as planets grow, the relative velocities of the surrounding planetesimals increase from velocities of the order of meters per second to a few kilometers per second. In addition, beyond the ice line where giant planets are formed, planetesimals are expected to be composed roughly of 50% ices.Aims. We aim to study the role of planetesimal fragmentation on giant planet formation considering the planetesimal catastrophic impact energy threshold as a function of the planetesimal relative velocities and compositions.Methods. We improved our model of planetesimal fragmentation incorporating a functional form of the catastrophic impact energythreshold with the planetesimal relative velocities and compositions. We also improved in our model the accretion of small fragments produced by the fragmentation of planetesimals during the collisional cascade considering specific pebble accretion rates.Results. We find that a more accurate and realistic model for the calculation of the catastrophic impact energy threshold tends toslow down the formation of massive cores. Only for reduced grain opacity values at the envelope of the planet is the cross-over massachieved before the disk timescale dissipation.Conclusions. While planetesimal fragmentation favors the quick formation of massive cores of 5?10 Earth masses the cross-over mass could be inhibited by planetesimal fragmentation. However, grain opacity reduction or pollution by the accreted planetesimals together with planetesimal fragmentation could explain the formation of giant planets with low-mass cores.
publishDate 2019
dc.date.none.fl_str_mv 2019-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/118175
San Sebastián, Irina Luciana; Guilera, Octavio Miguel; Parisi, Mirta Gabriela; Planetesimal fragmentation and giant planet formation; EDP Sciences; Astronomy and Astrophysics; 625; 5-2019; 1-12
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/118175
identifier_str_mv San Sebastián, Irina Luciana; Guilera, Octavio Miguel; Parisi, Mirta Gabriela; Planetesimal fragmentation and giant planet formation; EDP Sciences; Astronomy and Astrophysics; 625; 5-2019; 1-12
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.12288
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201834168
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782597965807616
score 12.982451